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INTRODUCTION

The book presents basic information on selected issues of condensed phase physics. 
This field of study provides one with the possibility of specialising within many areas 
of “condensed matter physics”, which is the largest branch of physics worldwide. 
As an elaboration designed for students (undergraduate and graduate), it contains 
elementary foundations of the issues discussed. The aim was to present a few topics 
showing the development of condensed phase physics.

Condensed phase physics is a field of physics that deals with the macroscopic 
and microscopic physical properties of matter. Thus, to understand many of the 
condensed phase issues and, in particular, the rapidly developing field of nanophysics, 
it is necessary to understand the basics of this field of physics. 

For physicists, this handbook can be a way to understand how differently we 
analyse macroscopic physics relative to nanophysics. For engineers, this handbook 
can be helpful in understanding that the technology of tomorrow is constructed 
using materials from atoms via the nanoscale up to macroscopic phenomena and 
properties. And what interpretation difficulties introduce the world at the nano scale.
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1. CRYSTALLINE STRUCTURE

Crystalline bodies are solids in which atoms, ions or molecules are arranged regularly 
in relation to each other.

Crystalline bodies, hereinafter referred as “crystals”, i.e. systems in which the 
ordering includes the entire body, are called covalent crystals when they are composed 
of atoms, ionic crystals when they are composed of ions and molecular crystals when 
they are composed of molecules. 

This specific structure is associated with many interesting optical, mechanical, 
electrical and magnetic properties. One of the basic attributes of crystals is anisotropy. 
Anisotropy is the dependence of analysed properties on the direction of observation. 
It is an experimental fact that all crystals exhibit anisotropy in elasticity and growth 
velocity. Other properties can be both anisotropic and isotropic (independent of the 
direction). Many crystals have the ability to twist the light polarisation plane.

From the microscopic point of view, regularity of the arrangement of atoms 
(ions, molecules) means that they retain their position in a three-dimensional space 
(showing a long-range order), determined in relation to other atoms. Such a spatial 
structure (a symmetrical arrangement of atoms) is invariant in time (except for phase 
transitions), despite the fact that atoms perform vibrations in relation to their positions 
of equilibrium. Symmetry results from the fact that atoms are arranged in a repetitive 
manner. It can be stated that any repetition operation can be represented by one of 
the three operations of symmetry: translation, rotation and reflection. This feature 
makes it possible to specify the symmetry rules that describe the structures that have 
been created. It is worth mentioning here that there are so-called quasicrystals, with 
a non-periodic lattice with, for example, a fivefold axis of symmetry1. 

The basic geometric solid that one can distinguish in the construction of crystals 
is a parallelepiped. By moving it in three dimensions, one creates a geometric lattice, 
which is a three-dimensional scheme of the internal structure of crystals. A spatial 
lattice defined in this way is an abstract concept. However, if one “superimposes” 
on the lattices a “base” containing physical elements of a crystal structure (atoms, 
ions, molecules) one will obtain a three-dimensional structure called a crystal lattice. 
The resulting elementary parallelepiped containing atoms, ions or molecules, being 
the smallest repeatable part of the crystal structure, is called an elementary cell 

1	 In 2011, Dan Szechtman received the Nobel Prize in Chemistry for his discovery of quasicrystals in 1984.
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(quasicrystals with a seemingly regular structure make it impossible to distinguish 
their elementary cells).

The basic feature of a crystal is its invariance in relation to the symmetry operation 
of translation ( )



T . Translation symmetry results from the fact that the same atoms in 
the same environment are repeated in different lattice nodes (lattice points) and that 
such a node (point) can be “superimposed” on another one as a result of symmetry 
operations. The elementary cells transformed by translation can be used to fill the 
entire space: 

	






T n n n� � �1 2 3a b c, 	 (1.1)

where ni are integers, and 


a b c, ,  are translation vectors associated with elementary 
cells (lattice vectors). 

A crystal does not change when we move it by any vector that is a linear 
combination of translation vectors.

Fig. 1. Scheme of the “construction” of a flat (two-dimensional – top drawing) and spatial  
(three-dimensional – bottom drawing) crystal lattice. A spatial lattice is built using the example  

of a diamond structure

Rotary symmetry describes the fact that an identical image of a crystal is observed 

after its rotation around a selected axis. One can state that a crystal has an n-fold axis 

if, after a rotation around this axis by the angle 2p
n

 (radians), the crystal passes into 

itself. The multiplicity of the symmetry axis is limited to n equal to 1, 2, 3, 4 and 6. It can 
be demonstrated that no other axis of symmetry is compatible with the translation 
symmetry of the lattice. 
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This evidence leads to the formula:

	 cos ,� �
�1
2
N 	  (1.2)

where N is an integer, and the angle a = 2p/n. 
Keeping in mind that -1 ≤ cosa ≤ 1 one gets N = –1, 0, 1, 2, 3, and thus  

a = 0, 
p
3

, 
p
2

, 
2
3
p

, p [1].

The centre of symmetry is a point which, as a result of the operation of inversion 
(transfer of a point from x, y, z to –x, –y, –z), makes it possible to obtain an identical 
arrangement of elements.

The plane of symmetry transforms the arrangement of elements into their image, 
created as if it were its mirror reflection.

The parallelepiped described by vectors 


a b c, ,  forms an elementary cell. There is 
also the concept of a primitive cell built by vectors of the base but containing only one 
atom, i.e. the smallest elementary cell. 

In 1850, August Bravais theoretically proved that crystals are made of parallelepipeds, 
which was confirmed by Laue2 in 1912. According to Bravais, there are seven (non-
equivalent) types of lattices in which atoms (ions, molecules) are distributed only in the 
corners. Since each corner is common to eight neighbouring cells, only 1/8th of each 
of these atoms belongs to a specific cell; as a result, the cell contains only one atom. The 
shape and size of an elementary cell are determined by the so-called lattice constants, 
which are the lengths of the cell edges a, b, c and angles a, b, g between these edges;  
a – the angle between b and c, b – the angle between a and c, and g – the angle between  
a and b. A cell defined in this way is called a primitive cell (Fig. 2a).

Apart from spatial lattices having nodes (points) only in the corners of cells, there 
are also lattices in which nodes (points) are located in the centres of walls or in the 
geometric centres of cells. Such arrangements are formed by the overlapping of two 
or more primitive cells. 

2	 In 1914, Max Theodor Felix von Laue received the Nobel Prize for Physics for discovering the 
phenomenon of X-ray diffraction on crystals.

Fig. 2. a) a primitive cell [6], b) three types of a regular cell [7]

b)

primitive  
regular P

body-centred
regular I

face-centred
regular F

a)
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Fig. 3. Seven crystal systems [2]

Consequently, 28 Bravais lattices can theoretically be obtained by assembling 
seven crystal systems and four ways of centring (P, C, I, F – 7 x 4 = 28). It turns out, 
however, that in a three-dimensional (3D) space, there are only 14 different Bravais 
lattices [3]. In a two-dimensional space (2D), on the other hand, there are 5 different 
Bravais lattices.

The result is the following manner of distributing nodes (atoms, ions or molecules) 
in a cell: 

•	 P – primitive, only corner knots, 1 atom per cell; 
•	 I – body-centred, nodes in corners, an additional node in the centre of the cell, 

2 atoms per cell; 
•	 F – face-centred, nodes in corners, additional nodes on the cell walls, 4 atoms 

per cell; 
•	 C – centred in the middle of the base, 2 atoms per cell. 
Given the values of lattice constants a, b, c and angles a, b, g seven crystallographic 

systems can be determined.

a

b

c

b a

γ

Triclinic
a ≠ b ≠ c
a ≠ b ≠ γ ≠ 90°

a b

c

b a

γ

Monoclinic
a = b ≠ c
a = γ = 90°
b ≠ 90°

a b

c

b a

γ

Orthorhombic
a ≠ b ≠ c
a = b = γ = 90°

a b

c

b a

γ

Hexagonal
a = b ≠ c
a = b = 90°
γ = 120°

a b

c

b a

Tetragonal
a = b ≠ c
a = b = γ = 90°

γ

a b

c
b a

γ

Cubic
a = b = c
a = b = γ = 90°

a
b

c

b

a

γ

Trigonal
a = b ≠ c
a = b = 90°
γ = 120°
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Table 1

Crystal systems and possible 3D Bravais lattices

SYSTEM P C I F

regular yes yes yes

tetragonal yes yes 

hexagonal yes

trigonal yes

rhombic yes yes yes yes

monoclinic yes yes

triclinic yes

Simple (macroscopic) elements of the symmetry of crystal systems can be 
described as follows:

•	 a regular system – four triple axes along the diagonal of the elementary cell;
•	 a tetragonal system – the quadruple axis is always assumed to be parallel to the 

z axis, the lattice parameters a and b are equal;
•	 a hexagonal system – the x and y axes form an angle of 120° and are 

perpendicular to the six-fold axis parallel to the z axis;
•	 a trigonal system – one triple axis;
•	 a rhombic system – three axes twice perpendicular to each other;
•	 a single-axis system – one double axis;
•	 a triclinic system – no special elements.
Bravais space lattices are also called translation lattices, because they can be 

obtained by translating any node. For example, for a body-centred regular system (I), 
the permitted translations are:

	
a b a b c a b c, , , .� �

� �
2 	

(1.3)

Other elements of symmetry are the same as those occurring in crystals (centre 
of symmetry, axis of symmetry and plane of symmetry). As mentioned above, the 
structure of a lattice does not change if we perform a rotation around one-, two-, three-, 

four- and six-fold axes of symmetry; analogously for rotations by 2
2
2

2
3

2
4

2
6

p
p p p p, , , ,  

radians. There is no lattice that can lead to a transition into itself through other 

rotations, especially by 
2
5
p

 radians (compare this with quasicrystals!). In 1619, 

Kepler showed that there is no seven-fold axis of symmetry (Fig. 4).
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Later works by Sohnke (1967), Schönflies (1891) and Fiodorov (1892) 
demonstrated that it is possible to create space lattices with certain special types of 
symmetry, such as screw axes or mirror-translation planes. In the case of a screw axis, 
the lattice passes into itself when we rotate it by 120º around the axis of symmetry and, 
simultaneously, move it parallel to the axis by ⅓ of the lattice spacing. Consideration 
of these additional elements of symmetry leads to 230 possible types of space lattices.

The choice of an elementary cell in the shape of a parallelepiped is not clear. Usually, 
it is chosen so that the shape of its walls reflects the symmetry of the lattice, and its 
volume is minimal, the number of right angles between the edges is maximal, and 
the nodes (points) are in positions conforming to one of Bravais’ 14 cells. However, 
for any lattice with a Bravaisian-centred elementary cell, one can always create 
a primitive, non-centred cell. Such a cell is known as the Wigner-Seitz simple cell3. 
To create such a cell, a given node (point) of the space lattice must be connected with 
straight segments to the nearest nodes (points). The planes perpendicular to those 
segments are then guided though the centres of those segments. The intersecting 
planes form an area called the Wigner-Seitz cell. These are polyhedrons that can 
tightly fill the space.

3	 Eugene Paul Wigner, an American physicist and mathematician, winner of the Nobel Prize for 
Physics; Frederick Seitz, an American physicist.

Fig. 4. Kepler’s proof (1619) that there is no seven-fold axis of symmetry

Two ways of selection of an elementary cell in a wall-centred cubic lattice:
a) high-symmetry cell, b) primitive cell

Fig. 5. Selection of a 3D elementary cell (upper part) and a 2D elementary cell (lower part) [4]

a) b)

t3

t2

t1

t3׳ t2׳

t1׳
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Using the definition of an elementary cell and primitive cell, the volume of these 
cells can be compared as described below (Fig. 6).

Fig. 6. Volume of primitive cells

In regular crystals, the directions that are three orthogonal axis directed parallel 
to the edge of the cube are usually determined by a notation composed of three 
natural numbers, as small as possible, one next to the other (in a row) placed in 
square brackets – [uvw]. Such a notation is called the Miller indices of L straight 
line (lattice straight line). These are the coordinates of the intersection point (node) 
of this line with one of the axes of the crystal in the reference system defined above. 
If the straight line passes through the origin of the coordinate system, the total 
coordinates of the first node (point) are the indices of the line. If the numbers 
are not integers, they must be reduced to a common denominator. The sense (the 
direction opposite to the one given) must be marked with a minus sign placed 
above the number. For example, [100] represents the direction parallel to one of 
the three axes (edges) of a cube. The notation [100] indicates the opposite direction 
(opposite turn). The notation [110] corresponds to the direction of the diagonal of 
the cube wall, and the notation [111] represents the direction along the diagonal 
of the cube. 

Fig. 7. Symbols for notation of the Miller indices of the lattice straight line
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The orientation of planes in a crystal (Miller’s indices for planes) is presented 
as a set of three numbers in round brackets (hkl). The position and orientation of 
planes is determined by three points in the plane which do not lie on a single line. 
If each point lies on a crystallographic axis, the plane can be determined by stating 
the position of these points along the axis in fixed units of the lattice. For example, if 
atoms defining a plane have the coordinates (4.0.0), (0.1.0) and (0.0.2) in relation to 
the axis vectors from the beginning of the system, the plane can then be defined as 
three numbers: 4, 1, 2. Using the inverse of these numbers, 1/4, 1 and 1/2 reduced to 
three first numbers relative to each other with a common denominator, one obtains 
the numbers h, k, l, i.e. the Miller indices of the plane: 

	 4 1 2 1
4

1 1
2

1
4

4
4

2
4

142, , , , , ,� �� �
�
�

�
�
��

�
�
�

�
�
�� � � � � �hkl .	 (1.4)

For an intersection at infinity (∞), the Miller index is zero (0). For example, 
symbolically: 

	 m n p
m n p

hkl� � � � � � � � � � � �, , : : thus , ,2 1 1 1 0 1
2

0 010 . 	 (1.5)

Therefore, the symbols (100), (110), (111) define three crystalline planes, 
perpendicular to three directions [100], [110], [111]. Thus, the zero index (0) in the 
symbol of a lattice plane indicates that this plane is parallel to the associated crystal 
axis (for example, the h indicator is related to the X axis). Miller indices in curly 
brackets {hkl} indicate that the described plane is the wall of the crystal.

The indices (hkl) define a single plane or a set of parallel planes. If the plane crosses 
the axis on the negative side, the corresponding index is marked with a minus sign 
above the number. The higher the Miller index value, the closer the given plane is 
located to the origin of the system. For example, if the plane P cuts the segments 
3a, 2b, 2c on the crystallographic axes (i.e. m = 3, n = 2, p = 2), the inverse of these 
numbers is equal to 1/3, 1/2 and 1/2, respectively. The smallest common multiple is 
6 – 2/6, 3/6, 3/6; as a result, the plane is (233) (see Fig. 8).

Fig. 8. Example: intersection points 3, 2, 2, the smallest common multiple of 6, plane (233) [5]
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Base elements (atoms, ions or molecules) are considered in crystallography to 
be rigid spheres with the radius R. This assumption implies, for example, that for 
a regular simple lattice, the number of atoms per cell is one; 8 corners after 1/8th 
part of the sphere (atom) in the corner ⇒ one atom. We further assume that atoms 
(spheres) come into contact with each other. There is a natural problem of how to 
pack the spheres in a three-dimensional space so that the free space is as small as 
possible; in other words, how can the packing density be the highest (packing factor 

W N
V
Vu � � atom

cell

or the ratio of the volume of the crystal occupied by N atoms treated 

as rigid spheres to the total volume of the cell).
In a regular simple structure, the atoms “touch each other” along the diagonal of 

the cube wall; the radius of the sphere is equal to half the length of the wall length a
2

: 

	 W
r

a

a

au � � �

�
�
�

�
�
�
� �1

4
3

4
2

3 6
0 52

3

3

3

3

� �
� . . 	 (1.6)

In a body-centred structure, the atoms “touch each other” along the diagonal of 
the cube; the radius of the sphere is equal to 1/4th of the length of the diagonal of the 

cube a 3
4

: 

	 W
r

a

a

au � � �

�

�
��

�

�
��
� �2

4
3

4 3
4

3
3

8
0 68

3

3

3

3

� �
� . . 	 (1.7)

In a face-centred structure, atoms “touch each other” along the diagonal of the 
cube wall; the radius of the sphere is equal to 1/4th of the length of the diagonal of 

the cube wall a 2
4

: 

	 W
r

a

a

au � � �

�

�
��

�

�
��
� �4

4
3

4 2
4

3
2

6
0 74

3

3

3

3

� �
� . .	 (1.8)

For comparison, the packing factor of a diamond is relatively small and equal to 0.34.
In 1912, Laue conducted an experiment that started X-ray crystallography. 

Crystals and photographic film were placed on the path of an X-ray beam. After 
developing the film, it turned out that apart from the trace of the incident beam, 
there were traces of beams deflected from the main beam. Laue asked himself where 
the deflected bundles came from. The answer contained a statement that they were 
created as a result of reflection of X-rays by mutually parallel (virtual) planes – the 
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so-called lattice planes of the crystal. This type of bent beam is created only in those 
cases where reflections from atomic planes of the crystal interfere4. 

This phenomenon is well illustrated by the following diagram:

Fig. 9. Laue diagram (λ is the wavelength, θB is the angle of incidence and deflection,  
AO = OB = dhkl sinθB and dhkl are the distances between planes

where λ is the wavelength, θB is the angle of incidence (and reflection); AO = OB = 
dhkl sinθB and dhkl are the distances between planes. Regular structures are expressed by 
the formula (a is a parameter of the elementary cell of a crystal):

	 d a

h k l
hkl �

� �2 2 2
.	 (1.9)

Therefore, under the condition of interference, one obtains:

	 n dhkl B� � 2 sin� .	 (1.10)

The above formula represents Bragg’s law. The law is fulfilled only for waves 
whose wavelength is equal to λ ≤ 2d, which means that it is not possible to use 
visible light as an incident wave (n is an integer – so-called order of deflection). 

Each X-ray beam reflected by the lattice planes can be characterised by the intensity 
and direction of propagation. The spatial distribution in the directions of reflected 
beams is determined by the symmetry and dimensions of the elementary cell. The 
number, the types and the mutual configuration of atoms in a cell influence only the 
intensity of the reflected beams. X-rays are the least sensitive to lattice defects (compared 
to electron and neutron radiation). Accurate measurements allow us to determine the 
relative positions of atoms within an elementary cell. This is due to the fact that only 
external electrons take part in the binding of atoms in the crystal. Most electrons are in 
energy states (energy shells), which are the same as in the isolated atom. 

4	 Interference – the phenomenon of amplification and extinction of wave amplitude as a result 
of overlapping (superposition) of two or more waves. The prerequisite for interference is phase 
consistency (correlation) and frequency equivalence.

incident
beam

deflected
beam

θB θB

θB θBdhkl

dhkl sin θB

2θB

A B

O
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The following alkaline metals have a regular, spatially centred structure: Li, Na, K, 
Rb, Cs (at room temperature). The same type of structure: V, Cr, Nb, Mo, Ta and W, as 
well as Fe, Ti and Zr, was established within a certain temperature range. The lattice 
has one atom per node (point); the positions of the atoms are 0.0.0 and 1/2,1/2,1/2.

A hexagonal structure is formed by transition metals Sc, Ti, Y, Zr, Be, Mg, Zn, Cd 
and most rare-earth metals [1]. In many crystals, the symmetry of the distribution of 
external electrons not taking part in bonds is spherical. 

Typical structures of metals, which constitute a majority of elements, have regular 
face-centred structures, regular body-centred structures and hexagonal structures [1].

Nobles metals, such as Cu, Ag and Au, higher-valence metals, such as Co, Ni, Rh, 
Pd, Ir and Pt, and nobles gases, such as Ne, Ar, Kr and Xe, have a regular wall-centred 
structure. The elementary cell contains four atoms in positions 0,0,0; 1/2,1/2,0; 
1/2,0/1.2; 0,1/2,1/1. The elementary cell contains two atoms in positions 0.0.0 and 
1/2.1/3.1/2.

Two specific structures are the diamond structure and the graphite structure. Si, 
Ge and Sn (in the α variety)5, and of course crystalline carbon (C), have a diamond 
structure (which is an independent crystallographic structure). Each node (point) 
is assigned two atoms in positions 0.0.0 and 1/4,1/4,1/4. Graphite is a crystalline 
structure of C at room temperature. The hexagonal lattice consists of four atoms 
placed in the elementary cell at positions 0,0,0; 0,0,1/2; 1/3,2/3,0; 2/3,1/3,1/2.

References

[1]	 Kelly A. and Groves G.W., Crystallography and Crystal Defects, Longman Group, London 1970. 
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2. TEXTURES

One can say that all substances have some physical and chemical properties. These 
different observed or measured characteristics make it possible to classify matter – in 
classical terms – as solids, liquids and gases. In the case of solids, one of the observed 
characteristics is texture. According to the definition provided in the Polish language 
dictionary published by the State Scientific Publishing House (PWN) in Warsaw 
in 2015, texture is “the internal structure of something, considered in terms of its 
characteristics and the way in which its components are arranged”. By modifying this 
definition, depending on the examined object, let us analyse the relationship between 
observed textures and the physical properties of materials. However, it should be 
noted that in the case of so-called soft matter, due to optical birefringence, the 
observation of liquid crystal textures (in various thermodynamic states) is possible. 
While for condensed matter (e.g. Kevlar), the observation of a fibre pattern texture is 
possible without polarised light.

The ambiguity of the concept of texture is evident in many areas of life. In art, 
for example, the texture of a work of art is the features of its surface, derived from 
the materials used to make it. In music, the texture of a work determines its sound 
based on how different instruments mix their parts and the speed with which they 
are played. Even computer science uses the notion of texture. Texture mapping is 
a bitmap image applied to a surface in computer graphics.

In material science, the texture of a polycrystalline sample is defined as the image 
of the crystallographic distribution of grains. A sample with completely random 
grain distribution does not have a clear texture. If one can distinguish the preferred 
orientation, then one can observe a moderate or strong texture. Experience has 
shown that texture is visible in many engineering materials and is a “reflection” of the 
different properties of these materials.

Two extreme cases are total lack of texture (an isotropic sample on a scale larger 
than the size of crystallites) and an ideal monocrystalline texture (a clearly visible 
“geometry” of the image reflecting the degree of order).

The observation or measurement of texture can be classified into a group of 
measurements of the mechanical properties of solids performed with the senses 
(sensory tests such as touch to determine the extent to which something is rough or 
smooth, soft or hard). 
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Modern technological equipment is largely based on thin polycrystalline layers 
with a thickness at the level of nanometres or micrometres. This applies, for example, 
to all microelectronic circuits and most optoelectronic circuits, as well as to sensor 
and superconducting layers. Most thin-film textures can be classified as belonging to 
one of two different types: 
1)	 in so-called fibre textures, the orientation of a certain plane of the grid is preferably 

parallel to the plane of the substrate;
2)	 in biaxial textures, the orientation of crystallites in the plane also tends to align 

with the sample. 
The latter phenomenon is adequately observed in (almost) epitaxial growth 

processes, where certain crystallographic axes of crystals in the layer tend to align 
along a specific crystallographic orientation (single crystal) of the substrate.

Fig. 1. Kevlar carbon fibre pattern texture [1]

Examples of textures obtained in laboratories are presented in Figs. 1, 2 and 3. 
Obtaining a texture on demand is an important task in thin-film technology. 
For example, for oxide compounds intended for the production of transparent 
conductive films or surface acoustic wave devices (SAW), the polar axis should be 
aligned along the substrate; this effect should be visible in the image of the texture. 
Another example is cables made of high-temperature superconductors, which are 
formed as multilayer oxide systems embedded on metal strips. Obtaining a biaxial 
texture in the YBa2Cu3O7-δ layers proved to be a decisive condition for obtaining 
sufficiently high critical currents [2]. The SEM images in Fig. 3 indicate that BaTiO3 
promotes nucleation and assists the growth of Y211 faceted rods, which are observed on 
the top surface of the BaTiO seed crystal and melt-textured YBCO pellet. Both samples 
synthesized via route A and B. The BaTiO3 epitaxial films were grown epitaxially on 
(100) SrTiO3 substrates via pulsed laser deposition […]. The epitaxial BaTiO3 was 
placed on the top of each of the Y123 pellets, with the film sur-face facing down. These 
sample assemblies were subjected to a series of thermal profiles that included initial 
heating to 940°C, followed by 960°C, before elevating to 1040°C and 1070°C for route 
A and B, respectively [2].
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Fig. 2. Scanning electron microscope (SEM) images of YBCO textures

The degree of “clarity” of a texture frequently evolves, e.g. during the growth of 
a thin layer. The most pronounced textures are obtained only when the layer reaches 
a certain thickness. Thin film manufacturers need texture profile or texture gradient 
information to optimise the deposition process. However, the determination of 
texture gradients by e.g. X-ray scattering is not unambiguous, due to the heterogeneity 
of sample thickness.

It should be mentioned that modern technology has “forced” engineers to 
reproducibly and quickly produce micro cavities (grooves, holes) on the surface of 
machine elements, i.e. surface texturing. The primary objective of surface texture 
creation is to reduce frictional resistance and wear of mating parts. Surface texturing 
is used to give specific utility and aesthetic characteristics to the surface. It is used, 
among others, in polymer technology and in medicine (specialist medical elements). 
Surface texturing increases resistance to wear and tear and is used wherever the 
adhesive properties of surface layers (bonding, coating, printing techniques, 
biological and chemical activity of the surface) are important. 

Laser micromachining is a surface texturing technique. It is a process where 
the thickness of the removed material is at a level of several micrometres or even 
millimetres with high accuracy. 

Fig. 3. View of a textured surface on an SiC ring: on the left – single recesses on the surface of the ring 
(magnification 500x), on the right – a set of textured recesses on the ring  

(darkness 42%, magnification 100x) [3]
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In physical sciences, texture is a colourful interference image of a thin layer (a few 
micrometres) of material placed between glass plates, showing the degree of order 
(macroscopic orientation) of molecules in a given phase. These images, regardless of 
their cause, are characteristic, and if they are observed at a changing temperature, the 
phase can be identified. In other words, the texture is a localised topological defect. 
Particularly spectacular textures can be observed in the case of thin layers of liquid 
crystals. Substances capable of forming liquid crystalline phases due to their specific 
physical properties, such as refractive index anisotropy or birefringence, show, in 
polarised light under an optical microscope, characteristic spatial structures simply 
reflecting the symmetry of their structure. To date, about 80,000 different liquid 
crystalline compounds, including polymeric liquid crystals, have been synthesised. 
It should be emphasised, however, that proper image analysis requires a lot of 
experience, which is difficult to achieve in the case of new liquid crystal systems 
(families) in the initial phase of research. This condition is particularly important 
in the case of banana-shaped liquid crystals, where the effect of the thermal history 
of the sample described in literature is crucial. It is also relatively difficult to analyse 
phase textures (or, more correctly, phases texture) of the blue phases (three blue 
phases have been identified).

Another drawback of the method is the fact that, especially in the smectic 
phases, small differences in the structure within the layers are not always reflected 
in clear changes in the textures. Paramorphosis (pseudomorphosis) can also cause 
an interpretation error. Pseudomorphosis is the phenomenon of inheritance of 
an external form (texture in the case of liquid crystals) by the studied compound, 
despite the fact that a phase transition from one liquid crystal phase to another 
has taken place. The new phase should then be tested by other available methods. 
Usually, however, the texture image changes during the transition from one phase 
to another. Therefore, by observing a thin liquid crystal sample with a polarisation 
microscope, one can determine the temperature of phase transitions and determine 
the boundaries of the areas of occurrence of a given phase. 

A polarisation microscope (the first one was built by H.F. Talbot in 1834) is an 
optical microscope used to observe anisotropic objects in polarised light [4]. Its 
operation is based on the phenomenon of birefringence of substances with a long-
distance ordering of molecules. One must keep in mind that the limit of resolution of 
an optical microscope is 0.15 µm.

Polarisation microscopes have numerous applications, among others in 
mineralogy, crystallography and petrography, as well as in chemistry, ceramics, 
metallography and the textile and paper industry, for the observation of biological 
samples, tissue structures and cells.

A typical configuration of a polarisation microscope is shown in Fig. 4. The 
microscope consists of a light source, which is usually a halogen bulb emitting white 
light which, reflected upwards by the mirror, passes through the lens. The light is 
linearly polarised by a polariser, which can often be rotated by 360°. The design of the 



21

microscope allows a white filter of a selected wavelength to be placed in the light path 
(if experiments depending on the wavelength are required). The light then enters the 
condenser, an optical system that is used to uniformly illuminate the sample. 

Fig. 4. Polarisation microscope [5]

A microscope for liquid crystal studies is normally equipped with a rotating 
table (on which the sample is placed). The table provides a rotation of the sample 
in a plane perpendicular to the direction of light propagation. The light then passes 
to the lens, which is crucial for the quality of the image. Three different lenses are 
often used for texture testing: 5x (red) for low magnification, 10x (yellow) and 20x 
(green) for medium magnification. The characteristic feature is that in addition to 
a typical orthoscopic observation, observation of the exit pupil of the lens, the so-
called conoscopic observation, is possible. In this case, a 40x (40x – blue) zoom lens 
is used. The change from one form of observation to the other is made by switching 
between the eyepiece and the Bertrand lens.

After passing through the lens, the light passes through the analyser (the second 
polariser), which can be rotated by 360°. The polariser and the analyser transmit 
light with a strictly defined polarisation. When testing textures, the analyser and the 
polariser are rotated 90° in relation to each other (i.e. crossed), which results in a black 
field of vision if the sample does not exhibit birefringence. The polarisation plane of 
the analyser can be changed to blank and brighten the observed areas. Colour effects 
are caused by a change in the polarity at different light lengths.

The light then goes into the eyepiece, which further enlarges the image. 
A magnification of 10 (10x) is often used. Testing dynamic effects is performed using 
analogue or digital eyepiece cameras. 

The polarisation microscope used in the study of liquid crystals is equipped 
with a heating table that can be used to change the temperature of the liquid crystal 
substance being tested, which is placed between two thin glass plates; the liquid 
crystal layer obtained in this way has a constant thickness, e.g. 5 µm or 10 µm 
(see Figs. 5 and 6) [6].
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The image created in the measuring vessel can be observed directly (in real time) 
on a monitor screen, thanks to a digital camera (CCD) placed on the microscope 
eyepiece and connected to a computer (Fig. 6).

Fig. 5. Schematic diagram of the system for polarisation microscopy [6]

Fig. 6. Image created in the measuring vessel observed directly (in real time) on a monitor screen [7]

A thin layer of a liquid crystalline substance can be observed using a microscope in 
the so-called “sandwich” geometry (a flat-parallel layout), which consists of a mutual 
parallel arrangement of elements. Fig. 7 shows a measuring vessel with this geometry. 
The measuring vessel consists of two glass plates on which a transparent conductive 
layer of tin dioxide (SnO2) is applied. Nylon separators are placed between the glass 
plates so as to form a flat parallel condenser. The thickness of the liquid crystal layer 
filling the vessel depends on the thickness of the spacers (usually at a level of several 
micrometres).

Fig. 7. Cross section of a measuring vessel – “sandwich” geometry [7]
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The plates are glued to the surface using a conductive electrode adhesive so that 
the measuring cell can be supplied with alternating voltage. Before filling the vessel, 
its parallelism and thickness are checked by means of a measurement system using the 
laser beam interference phenomenon. After the measuring vessel has been prepared 
in this way, it is filled with the liquid crystal; the vessel is filled with liquid crystal in 
the isotropic phase using the capillary effect.

The liquid crystal molecules filling the measuring vessel can be oriented by 
creating two basic orders – planar and homeotropic:

•	 planar orientation is characterised by the fact that the long axes of the molecules 
lie in planes parallel to the plane physically bounding the thin layer of the 
liquid crystal and which are parallel to the selected edge of the surface. This 
orientation can be obtained by grinding the bounding surface (glass plate) in 
the desired direction; 

•	 homeotropic orientation “sets” the long axes of the molecules perpendicular to 
the bounding plane (normal direction to the bounding plane). Many substances 
tend to orient themselves spontaneously on smooth glass or polymer surfaces. 
An additional element that ensures homeotropic orientation of the liquid 
crystal is the application of substances with an appropriate molecular structure, 
such as lecithin, on the surfaces of the glass plates. 

Fig. 8. Model orientations of a nematic liquid crystal: a) planar, b) homeotropic  
(symbol n states for director, a unit vector (axial versor)) [7]

a) b)

There is also a combination of these two orientations called “a hybrid”. In this case, 
one of the glass plates gives the liquid crystal a planar orientation, and the other – 
a homeotropic orientation. One must keep in mind that the molecular distribution 
shown in Fig. 8 is a model layout; in reality, it is disturbed by the thermal movements 
of molecules.

The nematic crystal in the planar phase (see Fig. 9) is transparent to light with 
polarisation in the direction of the molecules. It can easily be turned into an optically 
active element by rotating the bounding plates by a certain angle. The molecules 
adjacent to the upper plate are then arranged in a different direction to the molecules 
of the lower layer. The change of direction from one plate to the other is continuous 
(this an important feature of liquid crystals, indicating that the local orientation of 
the molecules can be extended to the entire macroscopic sample by the action of 
external factors (magnetic field, electric field, interaction with the surface), taking 
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advantage of the anisotropy of the physical properties of the material). Such a system 
will twist the light polarisation plane by exactly the same angle as the twisting angle 
of the plates. In this way, the polarisation plane can be twisted from 0° to 90°.

Fig. 9. Planar texture of a nematic liquid crystal after twisting of the plates [8]

If a liquid crystal has ferroelectric properties, the arrangement of the molecules 
can be controlled by an electric field, switching between planar and homeotropic 
textures. This is tantamount to changing the transparency of the liquid crystal layer. 
This effect has been used to develop liquid crystal displays.

The nematic phase is the least ordered mesophase (Fig. 10). Like all liquid crystals, 
it is made up of strongly anisotropic molecules. Liquid crystals ordered in this way are 
called nematics – the nematic phase is marked with the capital letter N. The name of 
this phase comes from the Greek word nema, which means a thread. The texture of the 
N-phase is visible under a polarising microscope in a way that resembles thin, elongated 
streaks. The nematic phase has been observed in more than 20,000 compounds. 

Fig. 10. Schematic image of a nematic, smectic A phase and a tilted (oblique) smectic C phase.  
The nematic uniaxial phase is characterised by quasi-parallel positioning of long molecular axes  

(described by the long axis vector 


k). The microscopic direction of orientation of the molecules is 
described by the unit vector (axial versor) n, called a director. The figure shows the smectic A phase 
planes (an additional planar arrangement of the centres of gravity of molecules; the long axes of the 
molecules are perpendicular to the layer). The tilted (oblique) smectic C phase shows the molecules 

tilted with respect to the layers [9, 10]

The nematic phase is characterised by quasi-parallel positioning of long molecular 
axes (described by the long axis vector 



k) of the neighbouring molecules. This leads 
to the distinction of the average, local, microscopic direction of orientation of the 
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molecules of the so-called director described by the unit vector (axial versor) 
n. 

The N-phase is a uniaxial phase (a crystallographic group of symmetry D∞h). The 
vector n , which defines the rotary axis of symmetry, does not have a distinguished 
sense, i.e. vectors n and – n are equivalent. The phase is not polar, even though the 
molecules can be polar. The lack of a long-range correlation of the centres of mass of 
the molecules enables them to translate almost freely. As a result, the nematic phase 
has low viscosity. The phase transition from nematic phase to isotropic phase is seen 
in Fig. 11.

It should be emphasised that in addition to the nematic phase described above, 
the occurrence of the chiral nematic phase has been observed. The chiral phase is 
made up of optically active mesogens, so-called chiral molecules (i.e. molecules that 
can exist in the form of two optical isomers that are mirror reflections of each other). 
Chirality eliminates the mirror plane but leaves the non-polarity of the director 
(directions n and – n are equivalent). The chiral phase was observed by Ch. Maugilin 
in cholesteric esters; hence its historical name – cholesteric phase. 

Fig. 11. Phase transition from nematic to isotropic phase (left side) and nematic phase  
(right side – nematic “threads” can be seen). In the left image, the nematic phase is seen as a colourful 

patchwork, while the isotropic phase is seen as a black stain [11]

It is characterised, in addition to the long-range orientation order of the molecules, 
by the twisting of the vector n , so that the structure becomes a chiral. The chiral pitch 
of such a helix ranges from 200 nm to infinity. It can be assumed that a nematic 
phase is a borderline case of a cholesteric phase with a chiral pitch equal to infinity  
Ch(∞) ≡ N. The cholesteric phase has reduced symmetry – D∞. Like nematics, cholesteric 
liquid crystals have loosely spaced molecules. Chirality refers to subsequent layers –
molecules lie parallel to each other, but only in a certain plane. The next plane also 
contains molecules arranged parallel to each other, but in relation to the molecules 
located under and above it, it is twisted by a certain angle (at a level of 1°). The value 
of the angle depends on the type of the substance, the dopants, the temperature and 
the external fields. The pitch of the helix of a twisted nematic has a length comparable 
to the wavelength of light (a few to several hundred nanometres), which results in the 
phenomenon of selective reflection of light. It is assumed that there are two types of 
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cholesteric phases defined by the direction of rotation of the helix: right-handed or 
left-handed. Most cholesteric materials exhibit a decrease in the pitch of the helix as 
the temperature rises [12, 13]. 

Smectic phases (Sm) – we now know several dozen of them – are more ordered 
liquid crystalline phases (Fig. 10). Apart from arranging the directions of long 
molecular axes (as in the nematic phase), in the smectic phases, there is also an 
additional planar arrangement of the centres of gravity of molecules – a translational 
order in virtual layers. Elongated molecules have limited translation freedom – they 
can move by the length of the molecule at most. The basic division of smectics results 
from the slope of the molecules in relation to the smectic layer; we have distinguished 
orthogonal or oblique phases. When the long axes of the molecules are perpendicular 
to the layer, the smectics are orthogonal (SmA, SmB). When the long axes of the 
molecules are tilted with respect to the normal to the layer, the smectics are oblique 
(SmC, SmI, SmF). Modifications of smectic phases are also connected with periodical 
ordering of molecules in planes (crystalline smectic phase E) or correlations between 
planes (crystalline smectic phase L).The simplest smectic is the type A smectic (SmA). 
The difference between a nematic and a type A smectic is that in a smectic, there is 
a  translation order along the director. The symmetry group remains unchanged 
(D∞h), but the translation symmetry is broken at the N ⇒ Sm phase transition point. 
At certain intervals, which are constant for a given substance but do not necessarily 
commensurate with the length of the mesogen, there are virtual layers whose normal 
is parallel to the director. A typical thickness of the smectic layer is about ~30Å. In 
the case of a type A smectic, the molecules in each layer are arranged in a quasi- 
-parallel order so that their long axes, on average, are perpendicular to the layer. Thus, 
this is an orthogonal-type smectic.

Most liquid crystal phases, such as N and SmA, are optically positive, which 
means that the refractive index parallel to the optical axis nII is greater than the 
refractive index perpendicular to the optical axis n^ ;�n n n� � ��II 0. For optically 
negative liquid crystals, such as most of the cholesteric phases (Ch), where the optical 
axis coincides with the helix axis and not with the (local) director the anisotropic 
refractive index is negative; Dn < 0. 

A common feature of all liquid crystals is the phenomenon of double refraction of 
light (birefringence), which is typical of some crystals (solids). Birefringence is the ability 
of optical media to double split the light beam into two beams: an ordinary beam no that 
fulfils the Sneullius law, and an extraordinary beam ne that does not fulfil the Sneullius 
law. The measure of this phenomenon is the difference of refraction coefficients ne and 
no; �n n ne o� � . The birefringence of the nematics decreases monotonously with an 
increase in temperature to zero at the point of phase transition to an isotropic liquid. 

The existence of a birefringence in a crystal results from the settings of anisotropic 
molecules along a selected direction, i.e. along a well-defined optical axis. In a uniaxial 
crystal, during refraction, the beam entering the crystal is divided into two beams:  
ne and no. In a biaxial crystal, both beams behave like extraordinary rays.
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SmA 	 temperature

SmI	 temperature

SmG  	 temperature
Fig. 12. Temperature modification of SmA, SmI and SmG textures [6]
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Let us analyse the example of an uniaxial nematic or smectic type A liquid 
crystal placed between crossed polarisers. In the homeotropic orientation, the 
direction of light propagation coincides with the optical axis. In this case, the angle 
between the optical axis and the direction of light propagation is zero. Consequently, 
�n n ne o� � � 0, and thus the intensity of the passing light, is equal to zero – the 
image is black.

In the planar orientation no = n^ and ne = nII or �n n n� �� II, the intensity of the 
passing light changes as sin2(2j), where j is the azimuthal angle or angle between 
the analyser and the projection of the optical axis on the surface of the sample. The 
“sinus square” function reaches the maximum for j = 45° and the minimum for 
j = 0° and j = 90°. The image is dark as soon as the optical axis becomes parallel 
to one of the directions of the main axes of the polariser, and the emerging texture 
exhibits a periodicity of 90o as the sample rotates between the polarisers.

Because of the interlayer interactions, we can distinguish between liquid-like and 
crystal-like smectics. Liquid-like smectics, such as SmA and SmC, do not exhibit 
an arrangement of the centres of gravity of the molecules inside the layers – in this 
respect, they resemble a two-dimensional liquid. In crystal-like smectics (SmB, SmD, 
SmE, SmI, SmG, etc.), within the layers, there is an arrangement of centres of gravity 
of molecules. They are more like a two-dimensional crystal. The crystalline smectic E 
(see Fig. 13) exhibits an orthorhombic arrangement. In the B smectic, the molecules 
are arranged perpendicularly in the vertices of regular hexagons (pseudohexagonal). 
Phases I and G have a similar arrangement, except that the molecules are inclined 
in phase I to the corner of the hexagon and in phase G to the wall of the hexagon. 
It was observed that the some smectic phases, such for instance smectic E, form 
partially ordered glasses. A partially ordered glass is formed by the cooling of an 
orientationally disordered crystal [12, 13].

By giving up the condition of axial symmetry along the normal to the smectic 
layer, we may set the mesogen so that the direction of its long axis forms a non- 
-zero angle to the normal to the layer – the SmC mesophase (Fig. 10). Such geometry 
requires entering not only a tilt angle, but also an azimuthal angle, determining 
the momentary position of the mesogen on the tilt cone, into the description of 
the direction of the selected molecule. However, the occurrence of a tilt angle is 
a necessary and sufficient condition to reduce the symmetry of the SmC phase with 
respect to the SmA phase. The symmetry of the smectic phase C is C2h. Lowering 
the symmetry usually means an increase in the order. Thus, the phase transition  
SmA ⇒ SmC (the second order transition) is connected with an increase in the order. 
This is confirmed by the fact that the SmC phase always occurs at a lower temperature 
than the SmA phase (for mesogens that have both phases). However, it is not 
necessary for the SmC phase to be followed by the SmA phase and then the nematic 
phase. Nevertheless, such a sequence of phases suggests that the translational order 
appears simultaneously with the deviation of the director. The formation of a tilted 
smectic structure directly from the nematic phase is probably connected with the 
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“transverse” interaction of the nearest molecules. This type of interaction can occur, 
for example, between side dipoles (electric) of polar neighbours. When the system 
reaches the energy minimum with a mutual interaction of the “ends” of the nearest 
molecules, a layer structure of the SmA type is formed. However, if the optimal 
interaction is a correlation such as the neighbouring molecules’ central dipole – end 
dipole, then this is a tilted SmC phase. The angle of tilting will depend mainly on 
the steric interactions or the best possible packing of molecules resulting from their 
chemical structure. It can be expected that the tilting angle does not depend on the 
temperature. Such smectics can be divided, depending on the tilting angle of the 
molecules, into high-angle smectics (tilting angle greater than 40°) and low-angle 
smectics (tilting angle within 26–30°) [6]. 

Fig. 13. Texture of the E smectic and of the glass phase6 of this smectic (right side) [12, 13]

At the end of the 1970s, liquid smectic crystals made of chiral molecules appeared, 
exhibiting ferroelectric properties in the SmC phase. It is customary to mark this 
phase with the symbol C* (SmC*). The property typical of cholesteric phases is the 
twisting of the polarisation plane; these are optically active liquid crystals. This means 
that the molecules forming the SmC* phase rotate the polarisation plane and thus 
change the polarisation state of the incident light. The angle by which the polarisation 
plane rotates is proportional to the optical path of the passing beam.

A decrease of the symmetry of the SmC (C2h) phase (in comparison to the N 
or SmA – D∞h phases) implies the appearance of biaxiality, and thus three different 
refractive indexes. The smectic C* is a chiral variety of the smectic C (see Fig. 14). The 
phase is characterised by a tilting from the normal to the layer (an angle θ) changing 
from layer to layer. 

6	 Glass is a nonequilibrium, non-crystalline state of matter that appears solid on a short time scale but continuously 
relaxes towards the liquid state. The liquid crystalline phases can be supercooled and frozen-in like isotropic 
liquids. As the nematic or smectic liquid crystalline structure freezes-in, and can be conserved by this process, 
glasses with anisotropic properties are obtained. These glasses show e.g. a high optical birefringence [20].
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Fig. 14. Smectic C* – a model [6]

The optical properties are similar to those of the cholesteric phase. When 
considering the transition of light along the axis of the helix, the effect is identical to 
that of twisted nematics. 

Due to the chirality of the molecules, there is no planar symmetry (which is 
present in SmC). The only element of symmetry is a double axis parallel to the layers 
and to the normal to the direction of the long axis of the molecules.

Textures of the smectic C* are presented in Fig. 15.

Fig. 15. Textures of the smectic C* [12, 13]
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The phase transition between SmC* and SmA can be either of the first or of the 
second order. The angle of inclination and the pitch of the screw are temperature 
dependent.

There are also more characteristic textures, such as streak texture (German: 
schlieren) (Fig. 16) and “fingerprint” texture (Fig. 17).

Fig. 16. Streak texture (German: schlieren) of the 5CB nematic [16]

Fig. 17. Fingerprint texture of a cholesteric crystal [17]

Blue phases

The traditional phase diagram that is present when the temperature rises is the 
sequence:

Cr ⇒ Sm ⇒ N/N* ⇒ Iso 

Slow cooling, however, can result in a phase(s) that is observed only in chiral 
materials, the so-called blue phase(s) (BP). The blue phase was previously observed 
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by Lehmann in the first period of development of liquid crystal physics. He noted that 
below the transition to isotropic liquid, some cholesterol derivatives have a bluish 
phase. Its most common texture is bright blue tiles. The blue phase is separated from 
the cholesteric phase by a phase transition with a specific transition warmth – thus, 
there is no doubt that it is a separate phase and not a peculiarity (textural). It is present 
in a narrow temperature range of approx. 1°C but can easily become supercooled. 
The blue cholesteric phases occur in substances for which the cholesteric phase has 
a relatively small helix pitch – approx. 5,000 Å (1 Å = 0.1 nm). Liquid crystalline 
substances with a helix length greater than 1 μm do not produce blue phases.

The width of the temperature range in which the blue phase occurs depends on 
the pitch of the cholesteric helix (the larger the pitch of the helix, the narrower the 
range). The nature of the arrangement of molecules is not fully understood. One of 
the characteristic features of the blue phases is the defect lattice.

The three blue phases are abbreviated as BPI, BPII and BPIII. They are clearly 
separated by phase transitions of type I. The blue phases BPI and BPII are characterised 
by a cubic structure with an elementary cell with the size of the helix pitch length. 
The size of the elementary cell of the BPI phase decreases with temperature, and the 
elementary cell in the BPII phase does not change with temperature. Phase BPIII is not 
well-known. This phase is called a “blue fog” and occurs just before the isotropic phase 
(see Fig. 18). It includes helix elements and is not periodic. One must keep in mind 
that phases BI, BII and BPIII are not “seen” by X-ray spectroscopy due to the fact that 
the existing three-dimensional arrangement with a lattice constant of 500 nm is not 
detected by X-ray diffraction (no X-ray scattering). Thus, one of the very important 
techniques for the analysis of the blue phase is polarising microscopy. The blue phases 
have a number of optical properties (mostly typical of liquid crystalline phases): such 
as optical activity with simultaneous isotropy and selective light reflection. The blue 
phases exhibit selective reflection of circularly polarised light. 

Fig. 18. Left to right: phase transition between the cholesteric phase (left-hand side, top corner)  
and the blue phase (right-hand side side); the texture of the cholesteric phase; the texture  

of the cholesteric phase with the texture of the blue phase BPII and BPIII [6]
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The stable phase of BPIII is also known as “fog phase” and “grey texture”. It is an 
almost amorphous structure with the same symmetry as in the isotropic phase, 
which, however, reflects the circularly polarised light, which indicates the existence 
of a kind of spiral superstructure. Its chirality increases with temperature (the same 
as in the case of BPI). It usually occurs in the range of 0.1°C, at a temperature higher 
than that of the BPI and BPII phases; the texture of the blue phase BPII is shown in 
Fig. 19 [6]. 

The “structural” element of phases BPI and BPII are the so-called double-twisted 
cylinders, as shown diagrammatically in Fig. 20, which represent a local structure 
with minimum free energy. In a double-twisted cylinder, the local director rotates 
around any cylinder radius. In the middle of the cylinder, the director is parallel to 
the cylinder axis. Moving outside the cylinder, the local director turns until it reaches 
an angle of 45°. The double-twisted cylinders are spatially perpendicular to each 
other. Taking into account the elasticity coefficients, it is the only structure forming 
a lattice of topological defects.

Fig. 19. Texture of the blue phase BPII [6]

Fig. 20. Suggested structure of the cubic lattice of a blue phase consisting of twisted cylinders.  
The “exclusion” area with a tetrahedral arrangement is marked [14]

The blue phase BPI is characterised by a long-range order with three-dimensional 
cubic symmetry bcc (body-centred cubic) [I4132]. The blue phase BPII, like the phase 
BPI, exhibits a cubic structure – it is a “single cubic” structure [P4232] (in international 
short symbol notations: the letter symbol describes the centring of the Bravais lattice 
(P is simple cubic, I is body-centred cubic), the first digital symbol (41 or 42) denotes 
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the symmetry along the major axis (c-axis in trigonal cases), the second (3 in this 
case), along the axes of secondary importance (a and b) and the third symbol (2 in this 
case), the symmetry in another direction) [6]. Both structures with lattice parameters 
are at the level of several hundred nanometres, i.e. the wavelength of visible light. The 
blue phases are therefore optically isotropic, i.e. they do not exhibit birefringence. For 
temperatures where the BPII phase is stable, we usually observe a texture consisting of 
different coloured plates (usually blue, but also green, red and others).

The transformation between the structure of the cholesteric phase (helix) and the 
cubic structure cannot occur without defects. The disclination lines of the blue phases 
BPI and BPII create a unique three-dimensional structure. These structures are shown 
in Fig. 21. In the case of the blue phase BPI, chirality increases with temperature, 
while in the case of the blue phase BPII , it does not change.

The textures of the blue phases obtained in a polarising microscope are known 
as “plate textures”. The different colours are due to the different orientations of the 
double-twisted cylinders (see Fig. 22).

Fig. 21. Texture of the smectic blue phase [6]

Fig. 22. Typical texture of the blue phase BPI (41°C) [6]

The blue smectic phases BPSm were discovered in a chiral compound, nBTMHC, 
where n is the length of the aliphatic chain. They are similar to the blue cholesteric 
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phases but are characterised by the translation symmetry typical of smectics. The 
smectic blue phases can be examined by X-ray diffraction. The smectic arrangement 
is connected with a three-dimensional orientation, and as a result, information 
about the symmetry of the elementary cells of the smectic blue phases was obtained. 
The structure of the blue phase BPSm1 is characterised by cubic symmetry, and that 
of the BPSm2 – by hexagonal symmetry. The size of the cell makes it impossible to 
test for visible light, which is commonly used in the case of cholesteric blue phases 
(ultraviolet range) [6]. 

Due to their narrow range of occurrence, the blue phases could not be used in 
liquid crystal displays. Given the interesting properties of the blue phases, an attempt 
has been made to increase the functionality of this type of material. In 2002, Kikuchi 
discovered the possibility to stabilise the blue phase with polymers.

The first implementation of the blue phases with a wide temperature range was 
published in the journal “Nature” [6]. The publication describes the results of research 
on a mixture created on the basis of a liquid crystal exhibiting the existence of the blue 
phase. The used dopants caused that the range of blue phase occurrence, increased 
from the typical (about 1°C) to over 40°C (for the obtained substance, the blue phase 
was stable in the range of 16–60°C). The mixtures obtained were examined using 
polarising microscopy, light diffraction, differential scanning calorimetry (DSC) and 
electro-optical spectroscopy.

Banana-shaped liquid crystals: the name of these types of liquid crystals is derived 
from the shape of the molecules from which it is made; the molecules are bent in 
a characteristic way and resemble a banana (Fig. 23). Sometimes the term “boomerang” 
is also used in literature to describe the shape of a characteristic molecule.

Fig. 23. Artistic drawing explaining the name [6]

Banana liquid crystals have been of particular interest to researchers since 
1996, when Teruki Niori and his colleagues reported the discovery of ferroelectric 
properties in smectic phases composed of bent molecules [14]. This was a significant 

H13C6O OC6H13
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discovery, because until then, ferroelectricity had only appeared in mesomorphic 
phases of sufficiently low symmetry and were necessarily made up of chiral molecules. 
However, the history of banana-shaped liquid crystals began earlier. It was initiated 
by Vorländer, who first noticed in 1929 that liquid crystal phases can be formed by 
molecules of nonlinear shape. It should be mentioned here that two years before 
Niori’s publication, Matsunaga and his collaborators synthesised a liquid crystal 
compound made up of nonchiral, curved (banana-shaped) molecules revealing the 
SmC phase.

Fig. 24. Typical banana-shaped liquid crystal molecule (R – end group, X, Y – bridge groups,  
p – electric dipole moment)

Banana-shaped liquid crystals represent a new, separate class of thermotropic 
liquid crystals. Banana-shaped phases created by bent molecules have no 
equivalent among calamitic liquid crystals, whose mesophases are made of rod-like 
molecules, or among discotic liquid crystals, which have column phases. These new 
modifications to the liquid crystal phases are the result of the specific packing of 
banana-shaped molecules. The designation of banana-shaped phases with the letter 
B (phases Bi) with an index (digits from 1 to 7) was proposed, and later adopted 
by scientists all over the world, at the “Chirality by Achiral Molecules” workshop 
on bent liquid crystal molecules held in Berlin in December 1997 [6]. Currently, 
we know eight modifications of banana-shaped smectic phases: from B1 to B8. The 
special arrangement of molecules in these phases causes them to exhibit ferro-, ferri- 
or antiferroelectric properties. Liquid crystalline phases composed of banana-shaped 
molecules are chiral, despite the fact that individual molecules are achiral [15].

A typical banana-shaped molecule is made up of five benzene rings – compare 
with Fig. 24. Some molecules are also known to be made up of six and seven rings. 
The curved shape is obtained by chemists by attaching the molecule’s “branches” to 
the phenyl ring in position 1,3. The resulting curvature between the molecular chains 
has an angle in the range of 120–130° [6]. 

Banana-shaped molecules form smectic phases with near-reach positional 
arrangement in the layer. These phases differ significantly from smectic phases 
formed by rod-like particles such as SmA and SmC. While the rotation around the 
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long axis in SmA is free, the rotation of the banana-shaped molecule around the 
axis connecting its two ends (the rotation around the long axis) is very difficult. In 
substances composed of banana-shaped molecules, the nematic phase occurs rarely.

According to preliminary X-ray studies, phase B1 seems to indicate a perpendicular 
column phase. A phase is formed for relatively short alkyl tails. There are usually 6 to 
10 molecules per elementary cell. Under a polarising microscope, phase B1 presents 
a  mosaic texture. Observations demonstrate that B1 appears as a high-temperature 
phase of phase B2. However, when the temperature decreases, phase B1 appears as a low-
temperature phase of phase B6. Phase B2 is an inclined smectic mesophase exhibiting 
a polar arrangement – the texture of B2 phase is shown in Fig. 25. The long molecular 
axis is inclined towards the normal layer (similar to SmC). However, chirality in phase 
B2 is not a result of a superhelical organisation, like in phase SmC* [6].

Fig. 25. Phase B2 at 68°C and 60°C [13]

Phase B3 (see the Fig. 26) is an inclined lamellar crystalline phase that does not 
exhibit a switching effect. It occurs below phase B2 [15].

Fig. 26. Phase B3 (81°C) [15]

Phase B4 (like B3) is a crystalline phase; thus, from the formal point of view, it is 
not a mesophase. The molecules in phase B4 exhibit a helix (a spiral system). Seen 
with a polarising microscope, phase B4 has an intense blue colour. The texture of the 
crystalline phases B3 and B4 are shown in Figs. 26 and 27, respectively. The B3 to B4 
phase transition is shown in Fig. 28.
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Fig. 27. Phase B4 (51°C) [15]

Phase B5 is observed as phase B2 cools down. The two phases are very similar to 
each other. For example, the observed textures and symmetry of the arrangement are 
almost identical. The B2 ⇒ B5 phase transition is visible in X-ray measurements by 
clearly sharpening the observed spectrum [15].

Fig. 28. B3 (53°C) → B4 (50°C) phase transition. The blue colour appearing in the background 
confirms the suggestion that this is a transition to phase B4 [15]

According to the X-rays tests, B6 is an intercalated, inclined smectic phase devoid 
of order in the smectic planes. It is formed by cured molecules with very short end 
chains. Phase B6 (as well as B1) is formed by a “collapse” of polar smectic layers in B2. 
Seen with a polarising microscope, phase B6 has a fan-shape texture. 

Phase B7 is a liquid-like polar smectic. The observed textures suggest the existence 
of a double helix (left- or right-turn). The phase is a switchable phase (like B2), but 
with a much higher amplitude of electric field than phase B2 [15].

The comparison of the appearance of smectic and banana-shaped phases as 
a function of increasing temperature is presented in Fig. 29.

SmH – SmK – SmE – SmG – SmJ – SmL – SmF – SmI – SmB – SmC – SmA 

B4 – B3 – B5 – B2 – B1 – B6                                                  temperature

B7 – a phase appearing in monomorphic compounds

Fig. 29. The typical order of occurrence of the smectic (SmY  
(Y ≡ A, B, C, E, F, G, H, I, J, K, L) and banana-shaped phases (Bi (i ≡ 1–7))
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When the influence of the bounding surfaces on the arrangement of molecules is 
small, a confocal texture is formed. Confocal domains, referred to as Dupin cyclides, 
appear. Liquid crystals forming this texture, due to their layered structure, tend to 
group into macroscopic objects of quite complicated structures and shapes, usually 
resulting from the confocal connection of the ellipses and the hyperboles. Confocal 
domains sometimes create regular arrangements visible under the microscope in the 
form of the so-called polygonal texture, visible as a lattice of separated polygons. 
A subgroup of confocal textures is fan textures typical of A, C, and F type smectics 
and cholesteric liquid crystals (see Fig. 30) [12, 13]. 

Fig. 30.  Confocal (left side – 138°C) and fan (right side – 81°C) textures  
of the A smectic [12, 13]

Fig. 31. Smectic mosaic texture – 66°C [6]

Mosaic texture (see Fig. 31) is the name used to describe a specific type of image 
seen in a polarising microscope. It is often not possible to clearly determine the 
mesomorphic structure from observations of this type of texture. It is necessary to 
perform e.g. a structural X-ray analysis. 

A unique form of phase transition analysis is direct observation of the change 
in the microscopic image. In addition to the transition kinematics, one can observe 
the dynamics of the change in the phase transition area (observe the near-transition 
effects). Photographs of such changes are shown in Fig. 32.
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Fig. 32. Dynamics of the change in the phase transition area of the blue phase. Fig. 32a presents 
the transition from the blue phase (left hand side of the drawing) throughout the cholesteric phase 

(centre) to the “needles” from the smectic A (fan texture) (right-hand side of the drawing) – a “double” 
transition at 141°C at a cooling rate of 0.2°C per minute [14]. Fig. 32b presents the transition from the 

blue phase (central part of the drawing) to the cholesteric phase – a transition at a temperature  
of 140.5°C at a cooling rate of 0.2°C per minute [14]

Anisotropy, i.e. the dependence of different physical properties on the direction 
of research, is a feature which, by its nature, disappears in fluids. Thus, it is especially 
interesting to observe anisotropy in liquid crystals. It is anisotropy that makes the 
flow of liquid crystals so different from the flow of ordinary liquids. The flow of 
a liquid crystal between two closely arranged parallel plates results in an orientation of 
molecules (in combination with the flow), which in turn results in dendritic patterns. 
By applying an alternating voltage of an amplitude above the critical value to a flat 
parallel capacitor filled with a liquid crystal, one will cause the fluid to move. This 
electrohydrodynamic process is called electro-convection and can be observed under 
a polarising microscope. A schematic image of electro-convection rolls suggested by 
Ralf Stannarius is presented in Fig. 33 [18].

Fig. 33. Schematic image of electro-convection rolls suggested by Ralf Stannarius [18]

Given the variety of the liquid crystal phases, the boundary conditions and the 
amplitude and frequency variants of the external electric field, it is easy to imagine 
the variety of electro-convection images that one can observe. Example photos are 
shown below (Figs. 35–39).

a) b)
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Fig. 35. Lattice image of a nematic liquid crystal created for the planar orientation as a result of the 
overlapping of “rolls” in four different directions (a) and the image of a smectic type created as a result 
of the influence of the smectic phase on the nematic phase (b) (actual dimension of the photograph: 

350x150 mm; n – director) [7]

Fig. 36. Image of rolls and squares of a nematic liquid crystal created for the homeotropic orientation 
[own elaboration]

Fig. 37. Image of domains of squares of a nematic liquid crystal created for the homeotropic 
orientation [19]

Fig. 38. Image of a domain built of squares of a nematic liquid crystal created for the homeotropic 
orientation [own elaboration]
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Fig. 39. Images of the pattern of rolls (left hand side) and stripes (right hand side) of a nematic liquid 
crystal created for the planar orientation [own elaboration]
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3. CONDENSED PHASE PHYSICS – ELEMENTS OF THE BASIC 
TENETS OF THE THEORY OF FREE ELECTRON GAS

One of the specific types of solids are crystalline bodies. They include a group referred 
to as metals. Most of the elements in the periodic table are metals.

Metals are elements characterised by the presence of so-called free electrons in 
the crystal lattice.

Let us consider a metal atom with one valence electron – a sodium atom, Na 
(Latin name: Natrium). Sodium has 11 electrons (Na – 1s2 2s2 2p6 3s1 ), of which, as 
one can see, only one valence electron is on the 3s shell. It surrounds the sodium ion 
Na+ with an electron cloud – a core composed of 10 electrons filling states 1s, 2s and 2p. 
If, by bringing two sodium atoms close to each other, one forms an Na2 molecule, the 
valence electrons will move freely in the “area” of the entire molecule. If we bring a 
larger number of atoms close to each other to form a sodium crystal with a metallic 
bond, the valence electrons will still be delocalised and will move throughout the 
volume of the entire crystal. This is due to the fact that in such a crystal, the mutual 
proximity of atoms causes the splitting of energy levels into sublevels. Electrons stay in 
the narrow energetic states 1s, 2s and 2p for a long time, while in the state 3s, they stay 
for a very short time (10-16s). This is a consequence of Heinserberg’s indeterminacy 
principle. Consequently, the short lifetime of electrons in the 3s state means that they 
can move freely through the entire crystal and take part in the transport of electricity. 
One of the parameters characterising a conductor is work function; in sodium, the 
work function is equal to 2.36 eV. 

The radius of the free ion Na+ is 0.98 Å, while the distance between the nearest 
neighbours is equal to 3.71 Å. Thus, the sodium metal consists of a lattice of positive 
ions (it is a regular, body-centred lattice) immersed in the gas of freely moving 
valence electrons. This gas forms a form of “glue” permeating the interior space, 
which, by electrostatic interaction, “pulls” positive ions into itself and densely packs 
them (relative density 0.97 g/l (20°C)). This interaction of ions and the electron gas 
is a metallic bond. 
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Quantum electron gas 

Let us consider the highest energy band corresponding to valence electrons (e.g. the 
3s band in a sodium atom). In a crystal composed of N atoms, the band contains 
N quantum states. According to the Pauli exclusion principle7, for a single atom in 
a given state, there can be at most two electrons described by the same quantum 
numbers (they differ by the spin number). Quantum states of electrons in a solid 
originate from the electron structure of the atom. If atoms are very distant from each 
other, their states are undisturbed, and, for example, in sodium, each atom has four 
independent energy values associated with states 1s, 2s, 2p and 3s. However, when 
the lattice constant decreases and reaches values close to the interatomic distance, 
there is an interaction between atoms that causes each electron level to split into 
sublevels (a split effect). Thus, a band of energy states is created from each level. 
Energy bands can overlap. The width of an energy band increases as is the greater, 
the greater the number of atoms interacting with each other increases (at distances 
commensurate with the atom radius). 

Fig. 1. Diagram showing a split of atomic energy levels; interatomic distances (r) are marked on the 
axis of abscissa, and energy values are marked on the axis of ordinates  

(r0 – equilibrium separation, s, p – electron energy states)

The splitting of the energy levels of the sodium atom is shown in the figure on the 
next page (Fig. 2).

As one can see, the 3s and 3p levels associated with the electrons furthest from the 
nucleus are the easiest to split. These levels have been so strongly split that for certain 
values of interatomic distances, they form a single common band. It is only partially 
filled with electrons, because in the unexcited sodium atom, on the 3s level, there was 
only one electron, and the 3p level was empty.

An additional effect of the formation of energy bands is the appearance of areas of 
energy inaccessible to electrons – these are the so-called energy gaps. The number of 

7	 According to the Pauli exclusion principle, there can be no two electrons in the atom with the same 
values of all four quantum numbers.

energy  
bands

energy
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electron states within a band is equal to the number of elementary cells in the crystal. 
Because the concentration of atoms in a solid is at a level of 1023/cm3, the energy states 
lie so close to each other that the values of energy inside the bands can be considered 
(in practice) as a continuous set. 

Fig. 2. Splitting of energy levels of a sodium atom (Na); the interatomic distances are marked  
on the axis of abscissa, and the energy values are marked on the axis of ordinates [1]

Valence electrons in a metal gradually occupy states inside the band, starting from 
the lowest located energy levels and upwards, two electrons per each state. The band 
can accommodate 2N electrons. If in a given crystal there are less than 2N valence 
electrons (e.g. in sodium, there are exactly N valence electrons), then the band is only 
partially filled. Such a band is referred to as a conductive band. This means that in an 
electric field, electrons can move inside the band – they are conductors of current. 
If a crystal contains such a number of electrons that the allowed energy bands are 
completely filled or completely empty, then the electrons cannot move in an electric 
field, and the crystal behaves like an insulator8. 

In the ground state (i.e. in the state corresponding to the temperature of absolute zero), 
the energy level occupied by electrons (fermions9) to a certain maximum value of energy 
is called the Fermi energy EF (above the Fermi energy, the energy states are empty). Thus, 
the band of conductivity is occupied to a certain value of energy – the EF energy. In the 
case of sodium, the Fermi energy is equal to about half of the value of the valence band.

In order to fully describe the behaviour of electrons forming electron gas in 
a  metal, one has to consider the influence of positive ions arranged in a periodic 
crystal lattice. For the sake of simplicity, let us start with a one-dimensional case. 
Let us imagine an infinitive (one-dimensional) crystal represented by a chain of 
equidistant atoms (Fig. 3), i.e. a crystal with a fixed “a” lattice.

8	 Electrical insulator, dielectric – a material whose resistivity is greater than 107 Ωm (in the case of 
metals, it is at a level of 10–8–10–6 Ωm) [2].

9	 Fermions are particles having a multiple of a half spin.
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Fig. 3. Infinitive (one-dimensional) crystal represented by a chain of equidistant atoms

If we induced in such a chain an elastic wave of the length λ described by the 
wave vector 



k , it would propagate along the crystal carrying the momentum � �
�

p k=  

where k � 2�
�

.

Now the kinetic energy of the free electron can be recorded as:
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Thus, the diagram of kinetic energy as a function of a wave vector is a parabola. 
Taking into account the fact that regularly distributed atoms (ions) create a variable 
potential for the moving electron, the energy image will change. By modifying the 
Schrödinger equation, we can state that all electrons described by vectors 



k  differing 
by a total multiple of 2p/a carry the same momentum. This means that in the diagram 
Ek on |



k |, one has to divide the energy curve into zones corresponding to different 
ranges of values of 
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k  and move the corresponding segments of the curve E k(|
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the first zone, i.e. to 
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,  (see Fig. 3).

Fig. 4. Diagram Ek of a free electron and an electron in the potential reduced to the first Brillouin zone  
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�
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�
�
�

� �
a a

, (energy is presented in arbitrary units)

The quantum calculus, taking into account the existence of the periodic potential in 
the points where atoms (ions) are placed, i.e. in lattice nodes (lattice points), shows that 
within the boundaries of zones (±n ∙ 2p/a), vector discontinuities appear 



k . Bearing 
in mind that a wave diffraction may occur on a crystal lattice, the Bragg condition10 
will take the form of: 
10	 The Bragg condition is a relation linking the geometry of a crystal with the wavelength of incident 

radiation.
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k n

a
� �

�.	 (3.2)

Thus, the first reflection occurs for k = ±p/a. On the other hand, a wave deflection 
can occur when: 
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where Q is the angle of incidence or the angle between the direction of the primary rays 
and the plane of the crystal (note that the angle Q is defined differently than in optics). 
The vector 



G  is a reciprocal lattice vector. From the formula (3.3), it follows that:

	 � � � �2 dhkl sin�.	 (3.4)

The reciprocal lattice vector 
   

G A B C� � �h k l  introduces reciprocal lattice vectors 
defined by reciprocal vectors with the following relationships:
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where the denominator expressions are the volume of the crystal lattice cell.
A simple cell of a reciprocal lattice cell is, for historical reasons, referred to as 

first Brillouin zone. Thus, the area � ��
�
�

�
�
�

� �
a a

,  is also referred to as a first Brillouin 

zone. In a one-dimensional case, G = h ∙ A = h ∙ (2p/a). The reflection at the 
Brillouin zone boundary causing the discontinuity of the vector 



k  can be explained 
by the phenomenon of interference. If the Bragg condition is met, the wave 
propagating in one direction is reflected and propagates in the opposite direction. 
Each subsequent reflection changes the propagation direction to the opposite. By 
superposing these waves, one can create two different standing waves; a y+ wave 
being the sum and a y- wave being the difference of the current waves. The energy 
states corresponding to both waves are different. The average energy of the y+ wave 
is less than that of the current wave, while the average energy of the y– wave is 
greater than that of the current wave. The difference in the energy of both waves 
Eg determines the value of the energy gap, i.e. the difference in value between two 
solutions for  k = –p/a and k = +p/a. 

For a regular simple lattice, the first and second Brillouin zones are relatively straight; 
they have the shape of a cube and of a rhombic dodecahedron, respectively (see Fig. 6).

A schematic image of energy bands in a solid is represented in the Fig. 7, showing 
horizontally positioned bands. Their interpretation is limited to identification of the 
area that represents the permitted bands and which area represents the forbidden 
energy area.
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Fig. 5. Schematic diagram illustrating the energy gap Eg [3]

Fig. 6. Schematic drawing of Brillouin zones; a cube and a rhombic dodecahedron [4]

Fig. 7. Schematic drawing of energy bands [5]

Free electron gas Free electron gas and
diffraction at Brillouin zones
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At a temperature of 0°K, electrons occupy the lowest energy states. The highest 
band containing electrons is called the valence band, and the (permitted) band above 
it is called the conductive band. Depending on the manner of occupation and the 
mutual positions of the bands and the freedom of movement of electrons, crystals are 
divided into insulators (dielectrics), semiconductors and conductors (metals).

In insulators and “pure” semiconductors11 at a temperature of 0K, the lower 
(valence) band fully occupied by electrons is separated from the completely empty 
higher (conductive) band by the energy gap. In the conductive band, there are no 
charge (current) carriers, which results in their lack of conductivity. In the valence 
band, the lack of conductivity is a consequence of occupation of all possible energy 
states; consequently, it is impossible to change the state. 

As shown in Fig. 6, the difference between an insulator and a semiconductor is 
based on the size of the energy gap; in insulators, the value of the energy gap is so 
high that even at room temperatures, the thermal excitations are not high enough 
to enable some electrons from the valence band to “jump” to the conductive band. 
It is assumed that the value of the energy gap in insulators is at a level of 10eV12. In 
semiconductors, the authors of the band theory (the 1930s), estimated the value of 
the energy gap to be less than 2.5eV, although, currently, there is knowledge of a gap 
equal to 6eV (6.2eV at 300K in aluminium nitride).

In metals, the band containing non-localised electrons is partially filled, or, as 
shown in Fig. 6, the valence band is superimposed on an empty conductive band. In 
both cases, the motion of electrons, i.e. the flow of current, is possible.

The structure discussed herein refers to ideal crystals that do not contain any 
dopants or defects in the structure of the crystallographic lattice. In reality, this never 
happens. The inclusion of these elements in the band structure model leads to the 
conclusion that in a real structure, one should observe additional energy levels. Two 
types of such levels lying within the energy gap are particularly important: a donor 
level close to the conductive band and an acceptor level close to the valence band.

These bands, appearing as a result of the doping effect, play a special role in 
semiconductors.

11	 There are also so-called doped semiconductors.
12	 1eV = 1.602×10–19J.

Fig. 8. Schematic drawing of energy bands in a doped structure  
(VB – valence band, CB – conductive band) [6]
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Semiconductors

Semiconductors can be divided into intrinsic and doped. Intrinsic semiconductors 
are those that have a large energy gap between the conductive band and the valence 
band at an absolute zero temperature. As the temperature increases, electrons are 
thermally excited from the valence band to the conductive band. These electrons can 
participate in electrical conductivity (type n conductivity). However, the unoccupied 
states, which were formed in the valence band and are referred to as “holes”, can 
also conduct electricity. The “holes” are fully-fledged positive carriers of current (on 
equal terms with electrons), and one can call them a positive hole charge (without 
quotation marks; hole instead “hole”); we are then dealing with conductivity of the 
p type. The mechanism of type p conductivity differs from the type n conductivity 
in that the free energy state (hole) can be occupied by another electron from the 
neighbouring atom, which fills the hole and creates another one. As one can see, the 
motion of a hole is actually annihilation and creation of subsequent holes. The hole 
as such does not move (unlike an electron), but it is assigned a certain effective mass 
resulting from the interaction of electrons with the crystalline field of atoms.

Fig. 9. Schematic drawing of hole conductivity (type p); the electron (the crossed circle) moves  
to the right, implying a virtual movement of the hole (ring) to the left

Doping is a very effective action; the addition of 1 boron atom to 105 atoms of 
silicon at room temperature results in a thousand-fold increase in the electrical 
conductivity of pure silicon.

Let us consider the influence of dopants in silicon and germanium. These elements 
crystallise in a tetrahedral structure. Each atom creates four bonds to its four nearest 
neighbours. If a five-value dopant atom (for example arsenic or antimony) is inserted 
into a crystalline lattice in place of the base atom, its one valence electron remains 
free (the remaining four form a bond). Such ionised dopant atoms are called donors. 
The resulting redundant electrons can move freely through the crystalline lattice –
like in a metal. Similarly, if the dopant is an atom of the third group, having three 
external electrons (for example indium or gallium), then the fourth electron, at the 
cost of a  small amount of energy needed to fill the bond, can be taken from the 
valence band. In the valence band, a conductive hole will be created. This type of 
a dopant is called an acceptor.
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The donor level (Fig. 8) lies very close to the conductive band, i.e. about 0.01eV 
below the bottom level of the conductive band with the gap of 1eV (for comparison, 
the thermal energy kBT at 20°C is equal to kBT = 0.026eV). The acceptance level is 
about 0.01eV above the valence band.

The presence of additional energy bands makes it easier to excite electrons to the 
conductive band, because they have to cross a smaller energy gap.

biased in the conductivity direction

biased in the reverse direction

Fig. 10. Drawing of the p-n junction biased in the direction of conductivity and the reverse direction [7]

The boundary of the bond between two conductive areas (type p and n) is called 
the p-n junction. The width of this junction is at the level of 10–7-10-6m. In the area 
of the p-n junction, electrons move from the semiconductor of the n type to the 
semiconductor of the p type, while holes move in the opposite direction. Thus, the 
direction of applied voltage polarises the bond to form a barrier (negative potential 
applied to the area of the p type) or in the direction of conductivity (at opposite 
polarisation). One should keep in mind that the resistance of a polarised junction 
in the barrier (reverse) direction increases significantly, but the current (relatively 
weak) will flow through it. For example, with a conductive current of 100mA, it will 
be 10pA in the case of a silicon diode or 100nA in the case of a germanium diode.
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4. DIELECTRIC SPECTROSCOPY METHOD13

Dielectric spectroscopy (DS) (also commonly referred to with the acronym DR14) or 
broadband dielectric spectroscopy (BDS) is a particularly attractive research method 
for substances whose molecules have one or more polar groups in their structure. 
The development of electronics in recent years has made it possible to observe and 
analyse dielectric relaxation processes in the frequency range from 10-4 Hz to 1012 Hz, 
unattainable for other measurement techniques, making dielectric spectroscopy a unique 
way to study the dielectric properties of materials and the reorientation dynamics of the 
molecular electrical dipole moment in the soft phases of matter, which, in addition to 
mesomorphic phases, include complex liquids, polymers, colloids, dendrimers, glasses 
and biological systems, as a function of both frequency and amplitude of the applied 
electric field. 

The dielectric spectrum, i.e. the dependence of the complex dielectric permittivity 
e* on the frequency of the electric field and temperature, contains a lot of information, 
the analysis of which enables qualitative and quantitative comparison of experimental 
results with theoretical predictions.

An electric dipole with a certain degree of freedom of orientation knocked out of 
the equilibrium position by an electric field impulse returns to its original state after 
some time – the relaxation process is observed. If this simple model is extended to the 
entire volume of the analysed dipole system (e.g. a capacitor filled with a dielectric), 
and the electric field impulse is replaced with an alternating external field E(t), 
then the reaction of the system to the disturbance E(t) will be the appearance of 
macroscopic polarisation P(t), described by the equation:

	 P t t t E t dt( ) ( ) ( ) ,� � � � ��� 	 (4.1)

where φ(t) is the dielectric response function of the system as measured with 
a dielectric spectrometer.

The relaxation times characterising the molecular relaxation processes cover 
a wide range of values, which means that the apparatus used in dielectric spectroscopy 
should cover at least 14 measuring decades (from the frequency ranges in which 
13	 Wojciech Otowski – own materials [1] and references cited therein.
14	 The symbol of the DR method is a commonly used abbreviation in literature based on the English 

term dielectric relaxation.
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the selected measuring methods can be used 10-3Hz to 1010Hz). This creates specific 
experimental problems. With such a wide frequency spectrum, it is not possible to 
use a single measuring technique (Fig. 1).

At subhertz and hertz frequencies, which are required, for example, for relaxation 
tests in polymers, but also for glassy states in liquid crystals, the capacitor discharge 
method is used. It consists in observation of the discharge current of a capacitor filled 
up with a dielectric. In this frequency range, the conductivity of the sample very 
strongly disturbs the measured spectrum. This effect may quantitatively exceed the 
measured signal many times over.

Fig. 1. Schematic representation of the frequency ranges within which selected  
dielectric measurement methods can be used

Bridge methods are used in the range from about a dozen or so hertz to about 
10 MHz. A capacitor filled with a dielectric is one of the arms of a Schering bridge. 
The Schlumberger-1260 set is a classic example of this type of equipment used in 
the range from hertz to megahertz. If, for interpretation reasons, it is necessary to 
obtain results ranging from tens of hertz to tens of gigahertz, the HP-4192 set is 
used. This impedance meter enables a smooth transition to gigahertz frequencies 
by directly switching the measurement set to a similar type set, the HP model 4191. 
Schlumberger bridges and HP sets are typical combined resistance meters Z(w). They 
measure the impedance of a sample placed at the end of a 50 W coaxial transmission 
line. The measuring cell is a flat parallel capacitor with gold-plated electrodes in the 
form of discs of a small diameter (usually 3 mm), separated with 50 mm silicone 
spacers. The capacitor is designed to be placed in a commercial holder. This way 
of combining the technical conditions of the device with the requirements of the 
experiment ensures that an accuracy of not less than 97%, as stipulated by the 
manufacturer, is maintained. All the bridges mentioned above are usually connected 
“on-line” with a computer, which enables direct analysis of data and for obtaining 
results in real time. The theoretical function of the dependence e’ and e’’ on frequency 
is shown in Fig. 2.
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Currently, bridge sets are also used in the range from megahertz to gigahertz. In 
this case, however, the measurement method is different from that used for megahertz 
bridges. The system measures the combined conductivity of a sample placed at the 
end of a transmission line as a function of frequency. The classic method used in this 
frequency range is the waveguide method. When the size of the sample is comparable 
to the measuring wavelength, which occurs starting from 0.1 GHz, it is possible to 
determine the properties of the dielectric from the interaction between the wave 
transmitted by the transmission line, i.e. the waveguide, and the sample placed in 
this line. A measurement of the impedance of a hollow waveguide and a waveguide 
filled with a dielectric provides the data needed to calculate the complex dielectric 
permittivity. However, this method has two main disadvantages. The thickness of 
the sample must be at a level of several millimetres (comparable to the length of 
the measuring wave), which results in relatively large volumes of the substance 
used in the experiment – several cm3. The second disadvantage is the need to use 
a new waveguide when changing the frequency of the measuring field to another. 
A given transmission line has dimensions that are closely related to the length of the 
measuring wave. A sample can only be measured at one selected frequency. Each 
change in frequency requires the use of a new portion of the measured substance. Of 
note are the high accuracy of this method and the high quality of the results obtained.

The measuring methods described above provide information about the properties 
of the dielectric as a function of frequency. Another measurement technique, called 
Time Domain Spectroscopy (TDS), is also used to measure the parameters of 
a dielectric substance as a function of time. This is a method used in the range from 
a few megahertz to a dozen or so gigahertz. A modification of this method is the so-
called Time Domain Reflectometry (TDR) technique. A TDR kit consists of a short rise 
time tunnel diode, a broadband digital oscilloscope and a computer for data collection 
and analysis. The rectangular voltage impulse generated by the diode is stored in the 
memory of the oscilloscope. At the same time, the same impulse, previously divided 
in the so-called head, transmitted by a semi-rigid waveguide line, reaches its free end, 
where the tested dielectric is placed. The signal is reflected from the sample and returns 
in the same line to the oscilloscope, where it is subtracted from the primary impulse. 
The complex dielectric constant is calculated from the formula:

	 � � �
�

� � � � �
�
�

�’ " ( )i c
i d

V R
V R

f z0

0
,	 (4.2)

where c is the speed of light, and V0 and R are the Laplace transform of the incident impulse 
v0(t) and the reflected impulse r(t), respectively. The function f(z) is a high-frequency 
correlation coefficient that must be determined each time by calibration measurements 
of substances with known dielectric parameters. The TDR method makes it possible to 
perform very fast measurements in a wide frequency range. However, it is necessary to 
pay attention to the problem that occurs when the transformation from a time domain 
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to a frequency domain is performed. Cutting off a series to a finite number of terms in 
a Fourier transform, which is necessary for numerical reasons, often causes a value to 
appear – especially the real component e* – which differs by several orders of magnitude 
from the expected values. At the same time, even a slight disturbance of the data obtained 
in the time domain can seriously affect the calculations done by the Fourier transform.

The measuring cell used for TDR measurements is a coaxial capacitor. It is the 
natural end of the transmission line, which guarantees the correct adjustment of the 
capacitor to the parameters of the system. This shape of the cell allows one, after 
placing it in a magnetic field, to obtain a perpendicular and semiperpendicular-
semiparallel orientation.

Fig. 2.  Schematic diagram of dispersion e′ and dielectric absorption (dielectric losses) e′′ as a function 
of relative frequency W ≡ wtD (the axis of abscissa represents the logarithm W)

Why is dielectric spectroscopy such an important measuring technique?
•	 Firstly, it is an excellent method of characterising phases and phase transitions;
•	 Secondly, dielectric spectroscopy is a unique way to study the reorientation 

dynamics of molecular electrical dipole momentum, especially in mesomorphic 
phases;

•	 Thirdly, dielectric spectroscopy enables the measurement of material 
properties, such as the frequency dependence of anisotropy of conductivity 
and dielectric permittivity, viscosity, elastic constants and the influence of 
temperature on the above-mentioned properties;

•	 Fourthly, dielectric spectroscopy is a very versatile technique; measurements 
can be performed on samples of different thicknesses, from μm to mm; one 
can use a commercial glass measuring cell (a flat capacitor) with electrodes 
of the ITO type, and one can measure samples with homeotropic or planar 
orientation of the director (which distinguishes SD from optical measurements 
where a homogeneous arrangement of the optical axis is required);

•	 Fifthly, the dielectric experiment can be fully automated.
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The measuring cell in SD is a flat parallel-plate capacitor. This element of the 
measuring circuit consists of two parallel plates, each with a surface area of S, placed 
at a distance of d from each other. When a capacitor is connected to the voltage U, an 
electric field 



E  will appear between its plates (the electric field can be visualised by 
a vector field whose “trajectories” lines always originating from the positive charge 
and terminating at the negative charge). 

The value of the field is equal to:

	
 E U

d
� �

��
�
��

V
m

.	 (4.3)

When calculating the capacitance C0 of the capacitor with a vacuum between its 
plates (actually, it is air, but the assumption of the identity air≡vacuum is, in this case, 
justified15), one gets:
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F , 	 (4.4)

where Q is the value of the charge collected on the plate (on each plate, there is a charge 
of the same value but with opposite signs – Fig. 3), ε0 is the dielectric permittivity of 
vacuum (ε0 = 8.85 10-12 [C2/Nm2]).

Fig. 3. Flat parallel-plate capacitor charged with Q (d – distance between parallel plates (electrodes))

Thus, the value of capacitance can be determined based on electrical or geometrical 
values. Having filled the space between the plates of a capacitor with a dielectric 
(e.g. a liquid crystal – Fig. 4), one will observe polarisation processes occurring in 
the dielectric. The dipoles are arranged (in the case of a polar dielectric) or formed in 
the electric field (of a capacitor), or both effects take place simultaneously. One must 
keep in mind that the phenomenon of polarisation (arrangement of the direction 
of molecular dipoles) occurs in the entire volume of the dielectric, i.e. a volumetric 
effect takes place.

15	 Relative permittivites of air at room temperature under 1 kHz is 1.00058986±0.00000050. 
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Fig. 4. Flat parallel-plate capacitor (charged) filled with a dielectric

The only difference between a spatial charge generated by polarisation of a free 
charge is that the former cannot move. The effect of this additional charge is expressed 
by the polarisation vector 



P  equal to the sum of dipole moments per volume of the 
dielectric. Because the dipole moment is measured in [Cm], the polarisation unit is 
[Cm/m3], i.e. [C/m2].

Fig. 5. Polarised capacitor filled with a dielectric

A polarised dielectric induces surface charges on the plates of a capacitor, the 
sign of which is opposite to the polarising charge, i.e. the same as that of the primary 
charges (Q). Assuming that the value of the polarisation vector 



P  is directly 
proportional to the strength of the field 



E  causing the polarisation, one obtains:

	 P E� ��0 , 	 (4.5)

where χ is the dielectric susceptibility.
If a capacitor remains connected to the voltage U, then its capacitance increases 

(1 + χ) times, where (1 + χ) is a material constant called a dielectric constant (in 
literature, the designation (1 + χ) = ε is also used):

	 C C C� �� � �1 0 0� � .	 (4.6)

Dielectric relaxation is the process of gradual return to the state of equilibrium 
of a system composed of polar molecules with a certain degree of freedom of 
reorientation when a disturbance such as an alternating electric field E E ei t� �� � � 0  
is removed (where E0 is the amplitude, and ω = 2πf is the circular frequency).

The observed relaxation is described by the formula: 

	 dP t
dt

P t( ) ( )
,� �

�
	 (4.7)

where the τ parameter is the macroscopic relaxation time.
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Fig. 6. Polarised capacitor filled with a dielectric – the figure shows surface charges,  
the sign of which is opposite to the polarisation charge

In the above formula, the effect of interactions between identical reorienting 
dipoles in a viscous environment is neglected.

Under the assumption of fulfilment of the linear relationship between polarisation 
P and variable field E, one obtains:

 	 P E E� � �� �� �� � � � � � � �( ) ( ) ( ) ( )0 01 ,	 (4.8)

where 

	 � � � � � �� � � � ��( ) ( ) ( )i  and � � � � � �� � � � ��( ) ( ) ( )i .	 (4.9)

One must keep in mind that the possible phase shift between the polarisation 
vector and the electric field vector is contained in the frequency dependence of 
dielectric susceptibility (or dielectric permittivity).

For systems described by the relaxation equation, the dependence of the complex 
dielectric permittivity on the frequency, � � � � � �� � � � ��( ) ( ) ( )i , where e′ (real part) 
means dielectric dispersion, and e′′ (imaginary part) means dielectric absorption, is 
the following: 
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where the parameter e∞ is the value of dielectric permittivity within high frequencies 
(w → ∞), also called the (optical) dielectric constant, and the parameter eS is the value 
of dielectric permittivity within low frequencies (w → 0), also called static dielectric 
permittivity, fmax = ωmax / 2π = (2πτmax)

-1 determines the maximum absorption, and tmax 
is the macroscopic relaxation time (note that the relaxation equation is also fulfilled 
by dielectric susceptibility). The parameter e∞ specifies relaxation-free inductive 
polarisation and is not associated with orientation polarisation, which determines 
dielectric relaxation. In other words, within the high frequency limits, the dipole 
does not reorient quickly enough to contribute to the dielectric response function. 
The difference (eS – e∞) is a measure of the effective dipole moment, taking into 
account the influence of the molecular environment. 
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At this point, it should be mentioned that polarisation of the dielectric material is 
caused by several mechanisms, such as:

•	 electron polarisation – related to deformation of the electron cloud of atoms, 
there is a displacement of negative charges of the electron cloud in relation to 
electrically positive nuclei and the formation of an electric dipole;

•	 atomic polarisation – related to the relative shift of the centre of charge mass 
within the lattice;

•	 ionic polarisation – the result of relative ion dispersion in the crystal lattice;
•	 dipole polarisation (also called orientation polarisation) – a result of arrangement 

of permanent dipoles along the direction of an external electric field.
The simplest response function describing the evolution of a system after the 

application of a disturbance (an electric field impulse) is the exponential function of 
the following form:

	 �
�

( ) expt t
� ��

�
�

�
�
�,	  (4.11)

where τ is the above-mentioned macroscopic relaxation time. 
This relaxation, which is characterised by only one relaxation time, is called Debye 

relaxation (after the physicist Peter Debye). The model relaxation characteristic for 
dynamic polarisation with only one relaxation time is the dielectric response of an 
ideal, noninteracting dipole aggregation to an alternating external electric field.

Fig. 7. Schematic image of a polar dielectric reaction to an electric field impulse. e∞ = e (w → ∞) is 
the value of dielectric permittivity within the limits of high frequencies and determines non-relaxable 

inductive polarisation Pind; Por is an orientation polarisation, which conditions dielectric relaxation; and 
eS = e (w → 0) is the value of dielectric permittivity within the limits of low frequencies

A simple transformation (multiplication of the denominator of the expression 
for the combined dielectric permittivity by the conjugate number (1� i�� ) makes it 
possible to separate the combined function into the real part and the imaginary part:

�
�

t
P t P

E
� � � � �� �

� 0

https://en.wikipedia.org/wiki/Peter_Debye
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As has been mentioned, the real part describes dielectric dispersion, i.e. the 
dependence of dielectric permittivity on the relative frequency (W ≡ wtD) of the 
measuring field, and the imaginary part describes the dielectric absorption, i.e. the 
dependence of dielectric losses on the relative frequency W of the measuring field. 

Fig. 2 shows that dielectric losses e′′ become zero for both low and high frequencies, 
and the maximum value is reached at the critical frequency wC = 1/tD. By measuring 
e′ and e′′ as a function of the external field frequency (e′ = e′(w), e′ = e′(w)), one can 
determine the time of dielectric relaxation tD.

In a real experiment carried out in the frequency range from hertz to megahertz, 
bridge methods are used. A capacitor filled with a dielectric is one of the arms of 
a Schering bridge. The quantity measured by the bridge is the combined conductivity 
(admittance):

 	 Y G iB
Z R iX

G i C� � � �
�

� � � �1 1
� S , 	 (4.13)

where G is conductance, B is susceptance, Z is impedance (hindrance – complex 
resistance), R is resistance, X is reactance, and C is the capacitance of the measured 
capacitor.

Conductance G can be linked to e′′:

	 �� ��
�
G
C0

,	  (4.14)

and susceptance B can be linked to e′:

	 � ��
C
C0

, 	 (4.15)

where C0 is the capacity of an empty capacitor (air capacitor).
The presented image of dielectric relaxation has been simplified to describe one 

mono-time process called the Debye process. In experimental reality, there are usually 
several processes observed in different frequency ranges. An example is the four 
different processes shown in Fig. 8. The figure shows that if the critical frequencies 
differ by at least an order of magnitude, it is possible to separate the mods precisely. 
We can assume that relaxation processes contribute to dielectric permittivity in an 
additive manner. Consequently, the complex dielectric constant can be expressed 
with the following equation16: 
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k
� �� �� � ��� � 1.	  (4.16)

16	 (εS – ε∞) may be called relaxation process amplitude.
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Fig. 8. Complex dielectric constant as a function of the frequency of the measuring field.  
The figure shows four modes corresponding to four different relaxation processes

It should be emphasised that the Debye relaxation model describes quite 
correctly an undisturbed three-dimensional rotational diffusion characterised by 
a single relaxation time. In most of the studied systems, fluctuations of the local 
molecular structure and the molecular environment cause a situation where only 
few molecular movements meet these conditions. The experimental results have 
shown that the Debye formula can only be used in certain cases. In order to achieve 
better compliance of the phenomenological description with the results of dielectric 
spectroscopy, the Debye relaxation model was modified by introducing additional 
empirical parameters. One of the most commonly used modifications is the so-called 
Cole-Cole equation introduced in 1941:

	 � � �
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where 0 ≤ a < 1.
The above formula cannot be derived analytically, but the parameter a, called the 

relaxation time distribution parameter, is commonly interpreted as a measure of the 
symmetrical relaxation time distribution around the value of tD.

In the case of � � 0, there is the so-called Debye equation (Debye-type process), 
and the Cole-Cole diagram is a semi-circle (Fig. 9a), whereas in the case of 0 1� �� , 
the diagram is an arc of a circle with the centre located below the axis ε′ (Fig. 9b). In 
such a case, the relaxation time is determined using the following relationship:
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The empirical relaxation time distribution parameter a is expressed by the value 
of the angle q formed by the axis e′ and the radius of the circle led to the point  
e∞(q = ½ap). 

Fig. 9. Cole-Cole Diagrams: typical diagram for a Debye process (a), a relaxation process  
in which the parameter a ≠ 0 (b)

a)

b)

Fig. 10 shows the boundary cases of the Cole-Cole diagrams and their associated 
relaxation time distribution functions.

There are also asymmetrical distributions described empirically with additional 
parameters. One of them, expressed in the formula below, was proposed by Cole and 
Davidson in 1951:
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where 0 < b ≤ 1.
In 1966, Havriliak and Negami introduced an even more complicated modification 

to Debye’s formula in the following form:
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where 0 < d ≤ 1 and 0 < g ≤ 1.
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The assumption of stochasticity of the process described by parametric 
distributions is still maintained. It should be emphasised that increasing the number 
of fitting parameters leads to better compatibility of the model with experimental 
results; however, it causes an increase in the number of problems associated with 
molecular interpretation of the data obtained.

In systems where the condition of linear system response to an applied disturbance 
is fulfilled, a very important issue is to check whether the response function satisfies 
the Kramers-Kronig condition. The Kramers-Kronig relation is a mathematical 
relationship between the real and the imaginary part of a complex function. In the 
case of SD, the relationship between the real (e′) and the imaginary (e′′) part of 
complex dielectric permittivity e* is as follows: 
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When w → 0 and e′(0) = eS, the function f(Ω) reaches singularity, and an additive 
real segment appears, which leads to the modification of the equation for e’’ to the 
following form:
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As a consequence of this change, we conclude that the segment A/ω describing 
the effect of conductivity and revealed within the low frequency limits (w → 0) does 
not have its share in the real component of the complex dielectric permittivity. 

Local field models

The electric fields acting on the molecule of a dielectric can be described as a local 
field. This is always a superposition of an external field applied to a dielectric and 
a certain “reaction” field that was created in the nearest vicinity of a molecule. The 
problem of a theoretical description is difficult. Therefore, below are presented the 
basic local field models proposed by Lorentz, Onsager, Kirkwood and Fröhlich, as 
well as Bordewijk and de Jeu (who extended the Kirkwood-Fröhlich model onto 
liquid crystals).

Lorentz local field model

To calculate the local field, Lorentz placed a molecule of a dielectric in the middle 
of a sphere with a radius that is large compared to the intermolecular distances but 
small compared to the size of the dielectric (the so-called semi-macroscopic cavity). 
This made it possible to obtain the formula for the field: 
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where ε0 is the dielectric permittivity of a vacuum, derived from charges evenly 
distributed on the surface of the cavity. Lorentz assumed that the fields of interactions 
with the nearest neighbours cancel each other in gases and liquids due to random 
movements of molecules, and in crystals, due to high symmetry 



Em = 0.
The final formula describing the Lorentz local field is given as the following 

expression:
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Thus, in the case of non-polar gases and liquids, the deformation polarity looks 
like this: 
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where 


P∞  and α∞ are the polarisation and the deforming polarisability, respectively.
After simple transformations, one obtains the Clausius-Mossotti formula, 

which makes it possible to determine the deforming polarisability on the basis of 
measurements of the dielectric constant:
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where N
N
M
A

0 � � (NA – Avogadro number, M – molar mass, r – density).

Onsager local field model

In 1936, L. Onsager presented a local field model for dipole dielectrics. In a dielectric, 
it separated a spherical cavity of a molecular size with a polarisable point dipole 
inside. The dielectric on the outside of the cavity was treated as a continuous and 
homogenous medium. Onsager assumed that the local field is a superposition of the 
cavity field 



G  created by an applied field 


E  and appearing as a reaction of the field 
system 



R:
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where m is the total dipole moment, and a is the radius of the cavity.



66

The Onsager model can be used to derive the Onsager equation having the 
following form:
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where N0 is the number of identical molecules per unit volume that have effective 
dipole moments m, kB is Boltzman’s constant, and T is the temperature.

The above equation makes it possible to calculate the dipole moments of molecules 
in pure liquids and in solutions with non-polar solvents. In his local field model, 
Onsager took into account long-range dipole-dipole interactions (which was not 
done by Lorentz) but omitted short-range interactions (e.g. interactions of hydrogen 
bonds). Onsager’s theory was “corrected” by Kirkwood and Fröhlich.

W. Maier and G. Meier used the local field model suggested by Onsager to describe 
nematic liquid crystals. The Maier-Meier theory combines the main components of 
the tensor e  with the main components of the dipole moment m  and the local field 
coefficient:
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where F is the reaction field coefficient, h is the cavity coefficient, and ml and mt are 
components of the permanent dipole moment along the direction of the long l and 
short t axes of the molecule, and es||, es^ are components measured, respectively, 
parallel and perpendicular to the director. 

Kirkwood-Fröhlich local field model

Onsager, in his field model, did not take into account short-range intermolecular 
forces, which are the cause of correlation of orientation of neighbouring molecules. 
These correlations were taken into account in the theory developed by H. Fröhlich 
and J.G. Kirkwood. 

Fröhlich considered the intermolecular interaction by considering a semi-
macroscopic cavity containing N molecules (where N is a number that is small 
enough to treat the problem microscopically but large enough to apply statistical 
laws). Kirkwood, in turn, considered the correlations between the orientations of the 
dipole moments of neighbouring molecules by introducing the parameter g.
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The equation they proposed looks like this:
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where g is the Kirkwood-Fröhlich correlation coefficient defined by the following 
formula:

	 g ij
i j

� �
�
�1 cos� , 	 (4.32)

where qij is the angle between the directions of permanent dipole moments of 
molecules i and j. 

The g parameter indicates whether and how the orientations of neighbouring 
dipoles are interdependent. When g = 1, this means that the orientations of the dipoles 
are uncorrelated (the Kirkwood-Fröhlich formula turns into the Onsager formula), 
when g < 1, the dipoles assume an anti-parallel orientation, and when g > 1, the dipoles 
tend to be parallel.

The g coefficient goes up to 1 as the temperature rises. An increase in temperature 
(increase in the energy of movements) weakens the inter-dipolar correlations.

Fig. 11. Example of the temperature dependence of the correlation coefficient
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Local field model for liquid crystals – de Jeu and Bordewijk

P. Bordewijk was the first to define an ellipsoidal cavity rather than a spherical cavity 
in his calculations of the local field. Nevertheless, Kirkwood-Bordewijk’s extended 
theory makes it possible to calculate, in a transparent manner, the relation between 
microscopic values and the macroscopic field 



E  only in two extreme cases: for an 
ideal arrangement (a|| = a1, a^ = at) and for isotropic distribution of the tensor of 
polarisability (a1= at).

Further improvements were made by de Jeu and Bordewijk. In 1978, they 
presented an equation that is an extension of the Kirkwood-Fröhlich theory to 
cover anisotropic systems (e.g. liquid crystals). Starting from the experimentally 
observed proportionality between the birefringence – De∞ = Dn2 = n2

|| – n2
^ – and the 

order parameter S – De∞~N0 ⋅ S – they proposed a linear relationship between the 
macroscopic electric field 



E  and the field inside a polarised dielectric 


Ei . In case of 
diamagnetic susceptibility, where a linear relationship with the order parameter was 
also found, the relationship – (c|| – c^) = (cl – ct) ⋅ S – suggests that the field “acting” 
on the molecule can be identified with the macroscopic field. Hence, the above 
conclusion about the linear relationship is described by the formula ˆ  

  

F i KE E E
where K̂  is the second rank tensor.

The final form of the formula they proposed is the following:
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where l ≡ l, t; (l – direction of the long axis of the molecule, t – direction of the short 
axis of the molecule), Wl

e is a tensor coefficient dependent on the shape of the cavity 
and the dielectric anisotropy, and gl is the de Jeu-Bordewijk anisotropic correlation 
coefficient.

The molecular dipole � � �d l t
2 2 2� �  is defined in relation to molecular coordinates 

l and t: 
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In the above formula, 


Kl  is a second rank tensor with the main components 
defined by the following formulas:
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An important feature of this model is the introduction of an effective polarisation 
dependent through Wi

sh on the local structure of the medium: 
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where w2 = a2/(a2 – b2), while a and b are, respectively, the length and the width of the 
ellipsoid. 

Ultimately, the transverse and longitudinal components of a molecular dipole are 
expressed by the following formulas:
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It should be emphasised that the issues discussed herein concerned the description 
of monomolecular dynamics processes.
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5. ROTATIONAL MOTION MATTER – SELECTED PROBLEMS17

Since time immemorial, people have been observing movement. It was Aristotle who 
formulated the first laws of the movement. Having a certain rather intuitive notion 
of force, he created the foundations of dynamics. His erroneous concepts survived 
until the 17th century, and it was only the works of Galileo and Newton that led to 
the formulation of the laws of movement that are accepted today. Dynamics, a word 
of Greek origin, remained and, with the development of knowledge and measuring 
instruments, became synonymous with phenomena related to all forms of movement. 
On the one hand, we talk about the dynamics of “macro” objects, such as planets and 
stars, and on the other hand, we analyse the dynamics of molecules and atoms, for 
example the dynamics of a crystal lattice.

Types of molecular motion

The term “dynamics” in broadly defined molecular systems can refer to both 
molecular motions and, for example, to hydrodynamic effects18. From the point of 
view of the following chapter, it is important to analyse reorientation movements of 
entire molecules and molecular groups.

Below is defined, uniformly for the entire paper, the different types of molecular 
movements: translation, orientation and internal: 

•	 translational (progressive) movement leads to relocation of the centre of mass 
of the molecule as a whole;

•	 orientation motion is the rotation of the entire molecule around a chosen 
reference system. These rotations can be almost free or partially hindered and 
limited to torsional movements. These movements concern a model molecule, 
which cannot always be identified with a physical molecule, and are commonly 
referred to as molecular movements. The term “intermolecular movements” is 
sometimes used to distinguish it from the following intramolecular movements;

•	 internal movement is, in the case of molecules with a complex chemical 
structure, the motion of one or more molecular groups that perform 

17	 Wojciech Otowski – own materials and references cited therein [1].
18	 Complementary material on the dynamics of molecules in Polish is contained in the book Chemical 

Physics [5].
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intramolecular reorientations independently of the movement of the entire 
molecule. The term “intramolecular movement” is also used for this type of 
movement.

The definitions presented above apply to a single molecule, the motion of which 
is determined by its surrounding neighbours. The second group of movements are 
collective processes or correlated movements of many molecules. On a time scale, 
they are, by their nature, slower than molecular (monomolecular) processes. Using 
the classical division into crystalline phases, liquids and gases can be attributed to the 
occurrence of different types of movements in each of them. In a crystal, collective 
processes are present – these are vibrations (of low amplitude) of atoms or molecules. 
In liquids, reorientation motions are observed, for example, stochastic translation 
motions. In gases, there are both undisturbed rotation and rare collisions that limit 
the full freedom of translation.

An interesting example of collective processes is the two modes existing in 
the low-frequency relaxation area of ferroelectric liquid crystals – the Goldstone 
mode and the “soft” mode. Relative reorientation of the molecule in relation to 
the selected reference system (e.g. a molecular system) can also occur as a result of 
a collective process that changes the direction of the director n  (an electroconvection 
phenomenon).

Isotropic rotational diffusion: the Debye model

In the comments to and descriptions of many molecular processes, the reader may 
find the term “Debye relaxation” or “Debye process”. Let us explain the concept (see 
chapter 4, page 71 of [1]).

In all molecular systems with a defined degree of freedom of reorientation, 
a continuous, chaotic movement of molecules is observed; the movement is 
progressive, rotational or oscillating. This stochastic sequence of steps that change 
the orientation of a molecule is called Brownian motion. The theoretical explanation 
of their essence was provided in the works of Marian Smoluchowski and Albert 
Einstein (1905–1906). The authors have shown that the Brownian motions are the 
result of the thermal movement of atoms and molecules postulated by the kinetic 
theory of matter. Using the idea of Brownian motions, Peter Debye (1929) proposed 
a diffusional model of molecular reorientation. The essence of the model is the 
assumption that the reorientation movement of the molecule is a three-dimensional, 
spherically isotropic, unhindered rotational diffusion subject to the laws of classical 
mechanics. The duration of each stochastic diffusion step is so short that the molecule 
does not perform a full rotation in its course – it changes its orientation only slightly 
(infinitesimal). The stochastic effect results from the assumption that collisions of 
molecules eliminate any interdependence of the movement. By solving the rotational 
diffusion equation, one can calculate the relaxation time of the diffusing molecules. 
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According to the model’s assumption, it is a single time characteristic of the system 
called macroscopic relaxation time t, dependent on the temperature in an activating 
manner. The diffusion equation is a differential equation. It describes the change in 
time of density of the probability P t( , )



R , specifying that molecules are at the t moment 
in the volume element dR3 in the space point described by the vector 



R, which is a set 
of coordinates necessary to determine the position and orientation:
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The rotational diffusion operator D̂  can be additively enlarged by components 
taking into account e.g. molecule collisions. It should be emphasised here that the 
diffusion equation does not provide a correct description of reorientation in times 
shorter than wg

-1, where wg
2 = kBT/I, where I is the moment of inertia of a given 

molecule. For example, for most liquid crystal molecules, the limit is 10 ps. 
Despite the limitations introduced to the Debye model, and especially the condition 

of free reorientation, it turns out that many experimental results obtained even for 
anisotropic systems, such as liquid crystals, allow one to define the corresponding 
movements as Debye processes, i.e. those characterised by a single time of relaxation 
(mono-time processes).

Tsu-Wei Nee and Robert Zwanzig proved (qualitatively and quantitatively) that 
the mono-time process is one of the possible motions resulting from the model of 
two-dimensional rotational diffusion that they proposed. The authors assume in their 
model, firstly, that the motion takes place on the surface of a cone and, secondly, that 
reorienting molecules with rigidly bound dipoles produce a time-dependent electric 
field in their environment. As a result of dielectric losses, the energy of the field is 
dissipated in space, which causes the effect of friction and braking of reorienting 
dipoles. This way of describing the molecular process leads to the occurrence of 
a  relaxation time distribution. In this case, the diffusion operator consists of two 
components ˆ ˆ ˆ

O CD D D  , where ˆ
OD  is the classic operator of the evolution of 

the system in the absence of friction, and ˆ
CD  is the collision operator taking into 

account any fluctuations resulting from the interaction with the environment. From 
a molecular standpoint, this two-dimensional reorientation concerns the internal 
motion of a part of the molecule in relation to the selected bond. However, if the 
internal movements are strongly hindered, and there is a reorientation of the entire 
(almost) rigid molecule whose movement is weakly hindered, then the result is 
a Debye process. It should be emphasised that the authors assume that the rotating 
molecules “slide” perfectly in relation to the environment. Thus, the kinetic energy 
of spherical molecule rotation is diffused only as a result of dielectric friction, and 
viscosity does not affect motion.

Hubbard conducted a theoretical analysis of the assumption made by Nee and 
Zwanzig. Taking into account both the effect of dielectric friction caused by the 
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environment of the rotating molecule and viscosity, the author demonstrated that 
in the case of an ideal slip and at the zero frequency limit of an electric field, the 
dispersion function describing the reorientation described above is a function 
typical for the Debye process, which confirms the correctness of the assumption 
made. Thus, under certain specific conditions, the system of reorienting mutually 
interacting molecules can be described as a mono-time rigid rotator model. 
Hubbard and Wolynes also analysed the solution of the diffusion equation when 
the diffusion operator consists of two components. An important conclusion of 
the analysis is that the effect of dielectric friction decreases with the increase in the 
number of L, which is an index of the YLm  function describing the orientation of 
molecules. However, in the case of dielectric spectroscopy where L = 1, it is necessary 
to take into account the discussed effect. The second observation is the induction 
by dielectric friction of a relaxation time distribution, which can be described as 
a multi-exponential decay function. Hubbard and Wolynes also concluded that 
when the interaction between molecules (rotating dipoles) is very strong, and the 
environmental configuration is quasi-static, the diffusion process responsible for 
the reorientation goes into a jump process. Thus, a simple description with the 
Debye formula is incorrect.

In 1967, Fatuzzo and Mason suggested a model similar to the deliberations 
presented by Nee and Zwanzig. It seems, however, that the form of presentation and 
the manner of obtaining the results by Nee and Zwanzig are much simpler and more 
direct than the Fatuzzo and Mason model.

It should be emphasised that translation motion can greatly reduce the distribution 
of relaxation times. Nee and Zwanzig demonstrated that long-range orientation 
correlations responsible for dielectric friction (hDF) are frequency dependent, 
which leads to a departure of the relaxation process from the form of the Debye 
process. However, the inclusion of the translation mode in hDF, in the microscopic 
hydrodynamic theory of relaxation, reduces the above-mentioned time distribution 
described by the multi-exponential decay function. This was the solution suggested 
by Bagchi and Chandra. The authors introduced the p′ coefficient that additively 
modifies the translation diffusion tensor. When p′= 0, the translation effect is ignored 
as it was by Nee and Zwanzig. Obtaining the Debye process type behaviour requires, 
according to the authors, that p′ be equal to e.g. 0.3 for water or 0.7 for methanol.

Anisotropic rotational diffusion

The diffusion equation presented above (Eq. 5.1) is a very attractive way to describe 
molecular dynamics. However, considering both the anisotropy of the reorienting 
object and the anisotropy of the medium in which the object is located creates 
problems in the mathematical description of the issue. The anisotropic diffusion 
formula has to be analysed not generally but for selected special cases.
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In the case of nematic and smectic phases, the anisotropic diffusion equation has 
the following form:
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where, as before, P is the probability density. The vector 


R  determines the position, 
and the set of Euler angles W determines the orientation of the model molecule. 
The anisotropic diffusion operator ˆ

AD  consists additively of translational and 
rotational components – ˆ ˆ ˆ

A T RD D D  . In the nematic phase, P is independent of  


R –  P P


R,� �� � � � � – and we are dealing with the rotation as in the case of 
magnetic or dielectric relaxation. On the other hand, however, transport phenomena 
occurring over long distances observed, e.g. using the spin echo technique, described 
by the translation operator, average the reorientation movement. In general, the 
rotational-translation coupling effect of  ˆ

TD   should be taken into account when 
analysing the neutron spectra, because in this case, the spectral function depends on 
the position and the orientation.

In the smectic phase A, due to the heterogeneous density of the medium along 
the normal to the smectic planes (axis Z), it is not possible to develop P



R,�� �  
into a functional series. Additionally, a strong rotational-translational coupling 
prevents such an analysis of the diffusion equation, because the frequency-dependent 
tensor rotational operator J(w) has, in addition to a rotational component ˆ ( )RJ  , 
a translation component ˆ ( )TJ  : 

	 ˆ ˆ ˆ( ) ( ) ( )R TJ J J     .	  (5.3)

Diffusion equation and internal motions

The diffusion equation can also take into account internal motions. The simplest form 
of description of an internal motion is to treat it as a jump between conformational 
equilibrium positions. For one degree of freedom, the matrix W of the passage from 
the minimum ‘m’ to the minimum ‘n’ through the saddle point ‘s’ is expressed by the 
formula:
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where Ds – diffusion tensor, Us – conformational potential, Ei (i ≡ m,s) – free energy.
The general form of the diffusion equation for molecules with multiple degrees of 

freedom takes the following form:
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where F describes the internal coordinates, and W describes the external coordinates 
that define the orientation in the laboratory system. 



Di  and 


Dr are, respectively, the 
tensor describing the reorientation of the entire molecule and the tensor describing 
the reorientation of its fragments. The potential acting on the molecule with internal 
degrees of freedom in the anisotropic phase can be expressed in the following form: 

	 U U Utors mf� � � � �, ,� � � � � � � �, 	 (5.6)

where U tors �� �  is the twist component, and U mf � �,� �  is the component describing 
the anisotropic interaction with the environment. The above formula can be broken 
down into the sum of components coming from different units, such as e.g. functional 
molecular groups:
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where U core ( )F  and U i  describe, respectively, the energy of the body of the molecule 
and the energy of its i-th fragment, taking the following form:
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where E1 and E2 are, respectively, the strength of the external molecular field acting 
on the body and the i-th fragment of the molecule.

Ferrarini et al. [2] made numerical estimates of the spectral densities of the 
NMR signal for 4-pentyl-4′-cyanobiphenyl (5CB). They assumed two coupling 
states and that the ratio of the components of the anisotropic diffusion tensor are 
D||/D^ = 10. In the first state, they assumed the existence of a coupling between the 
movement of the body (inter motion) and the internal movements (intra motions). 
In the other state, they assumed there was no such coupling. The calculations 
made it possible to conclude that the coupling effect becomes significant when the 
diffusion movement of the molecule, as a whole, is slower than the frequency of the 
conformational jumps.
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Diffusion equation and molecular biaxiality effect

Let us consider a molecule that, from the point of view of symmetry, can be considered 
as biaxial. We will have to deal with such an effect when analysing, for example, disc-
-like molecules, where, in order to fully define their degree of order, one has to take 
into account the parameters S and D. 

The parameter S is the mean value of the Legendre polynomial P2: 

	 S P� �� � �
1
2

3 12
2cos � , 	 (5.9)

where the angle q is the angle between the axis of symmetry of the elongated molecule 
and the axis of symmetry of the mesophase, and the parenthesis < > is the statistical-
mechanical average. In the description of the arrangement with the so-called Saupe 
array, the D parameter corresponds to the following expression:
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where li = lX, lY, lZ are the director’s directional cosines relative to the molecular axis 
of the reference system.

Diffusion equation and local field effect

It should be emphasised that the presented applications of the diffusion equation 
for the analysis of molecular dynamics were related to the reorientation of a selected 
model molecule placed in an anisotropic environment. It can be stated that the 
“solvent” molecules form an anisotropic molecular potential field acting on the 
model molecule of the dissolved substance. The “solvent” also determines the form of 
the diffusion tensor used to describe the dynamics. 

When considering the problem of the molecular field, the idea appears for 
recording the potential in the following form:

	 U x X U x U X U x X, ,� � � � � � � � � � ��0 0 , 	 (5.11)

where the x and X coordinates determine the position relative to the solved substance 
system and the solvent system. The component U x X� � �,  describes the interaction of 
these two systems. In the case of dielectric spectroscopy where dipole molecules m   
are involved, the coupling effect between the model molecule oriented in relation to 
the laboratory system and the “solvent” appears as dielectric friction. An analogy can 
be seen with the effect of braking of the reorientation of electric dipoles introduced 
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by Tsu-Wei Nee and Zwanzig. In literature, the following expression is used for the 
time of relaxation of model molecules of a solution in the isotropic phase:

	 �
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where �R RD� � ��1
 and tS  is the correlation time for fluctuations of solvent 

polarisation. The interaction energy DES  is a function of the volume V occupied by 
the model molecule, the es static dielectric permittivity and the e∞ (optical) dielectric 
constant of the solvent: 
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In literature on this subject, this issue is often referred to as the problem of local 
field. Knowledge of the local field makes it possible to determine the relationship 
between the macroscopic and microscopic parameters of a dielectric. However, one 
must keep in mind that the macroscopically measurable values describing a dielectric 
are statistical in nature and are the result of many complex processes, whose inclusion 
in the model(s) qualitatively and quantitatively describing a given dielectric substance 
is often impossible. This entails the need to introduce various assumptions limiting 
the generality and applicability of the results obtained.

Onsager separated a spherical macro-cavity in a dielectric with a polarisable point 
dipole inside. He assumed that the local field is a superposition of the cavity field 



EC   
(created by an applied field 



E ) and the field 


R  appearing as a reaction – 
  

E E Rloc C� � .
In his calculations, however, he did not take into account intermolecular short-
range interactions, assuming that the environment of the cavity is a homogeneous 
and continuous medium with dielectric permittivity of e0. The theory proposed by 
Fröhlich and Kirkwood had no such limitation. Fröhlich took the intermolecular 
interaction into account by considering a macro-cavity with many molecules in it. 
Kirkwood took into account the degree of correlation between the orientations of 
the dipole moments of the neighbouring molecules by introducing the parameter g, 
referred to as the Kirkwood-Fröhlich correlation coefficient:

 	 g ij
i j

� �
�
�1 cos� ,	 (5.14)

where Qij  is the angle between the directions of permanent dipole moments of 
molecules i and j. When g < 1, dipoles tend to be antiparallel, g > 1 means a tendency 
to parallel dipoles correlations, and g = 1 means that the orientations of all dipoles are 
completely random. As a result, they obtained the formula: 
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called the Kirkwood-Fröhlich formula, where ep means the dielectric permittivity 
of vacuum, N N MA0 � � /  is the number of identical molecules in the volume unit 
having effective dipole moments m , T is the temperature, kB is the Boltzman constant, 
r is the density, NA is the Avogadro number, and M is the molar mass. The expression 
gm2 is often referred to as the effective dipole moment – m2

eff  = g  ∙  μ2:
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,	 (5.16a)
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where the summation extends to all molecules different from the selected molecule i, and 
the components of the dipole moment ml and mt are defined, respectively, as parallel 
and perpendicular to the long molecular axis L. 

Other values, such as dielectric permittivity, become a second order tensor eij, 
where i, j are permutations of the axes (X, Y, Z) of a selected macroscopic (laboratory) 
coordinate system. Bringing this tensor to a diagonal form results in: 
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where � ��� � ZZ  � � �� � �� �XX YY / 2  and eXX, eYY, eZZ  are the components measured 
along the axes X, Y, Z. The main components of the tensor e and e^ can be measured, 
respectively, parallel and perpendicular to the director n. Of note is the fact that 
dielectric anisotropy in liquid crystals was observed by Jeżewski as early as in 1924. 
He measured the first two liquid crystals, oriented with an electric field, from the 
homologous series p-anisotropy: PAA and PAP.

W. Maier and G. Meier developed the theory of static dielectric permittivity (MM 
theory), combining the main components of the tensor ê  with the main components 
of dipole moment m  and the local field, which resulted in an expression for dielectric 
anisotropy:
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where F is the coefficient of the reaction field, h is the coefficient of the cavity,  
�� � �� �l t  is the anisotropy of the tensor of polarisability, and S is the parameter 
of order.

Correlation function

The system of molecules is a dynamic system, with a continuous, chaotic thermal 
movement of mesogens. However, one can imagine that it is an external factor that 
causes an additional disturbance. Assuming that we are dealing with dipole molecules, 
it is their interaction with the external electric field that will cause a change of the 
energy state of the system. Removing the external factor will enable the system to 
return to the state of equilibrium in a finite but non-zero time. The return process is 
called the relaxation process. By tracing in time the behaviour of a chosen physical 
value, for example the dipole moment, one can, in some cases, determine the time of 
return of the system to its original state; this time is called relaxation time. 

One of the forms of the description of the “return process” is an analysis of the 
molecular correlation function of the physical value A. By measuring the response 
function of the system at t = 0, and later at t = t1 > 0, one can express the fluctuation 
of the correlation of the value A by means of the correlation function CA(t). The 
CA function is defined as the average of the product of the value of A at the initial 
moment t = 0 multiplied by the value at the moment t = t1 > 0:

	 C t A A tA i j( ) ( ) ( )= 0 . 	 (5.19)

When i ≠ j, then the function CA(t) is called the mutual correlation function. If i = j, 
then this is autocorrelation of the same molecule in different time moments. The 
autocorrelation function reaches its maximum at the moment t = 0, when the value 
A is compared with itself. It is more convenient to use the normalised autocorrelation 
function: 

	 C t
A A t
A AA ( )

( ) ( )
( ) ( )

=
0
0 0

. 	 (5.20)

According to the ergodic hypothesis, i.e. the assumption that the averaging of all 
the elements of a set is the same as the averaging of time for the selected element of 
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the set and the assumption that the system remains in the state of thermodynamic 
equilibrium for negative times (t < 0), the correlation functions can be expressed with 
the formula:

	  C t
T

A A t dA
T

T

( ) lim ( ) ( )� �
�� �

1

0

� � �,	  (5.21)

where T is the time interval in which the averaging was performed.
The correlation function is associated with its integral characteristics, called the 

correlation time tA  of the value A:

	 �A AC t dt�
�

� ( )
0

.	  (5.22)

If a molecule makes random jumps over a potential barrier under the influence of 
sudden fluctuations in energy, one can speak of a stochastic process. Let us assume 
that there is a molecular system with two equal equilibrium positions and that at 
the moment t = 0 all molecules of this system are in the first position. Over time, 
the molecules will jump to the second position. This process will continue until the 
equilibrium is reached, i.e. until the degree of occupancy of the first and second 
position is the same. In relation to the entire set of molecules, one can describe the 
above phenomenon with the formalism of the correlation function. There will be 
a connection, an identity correlation, of the state from before the given moment of 
time with the state from the present moment, because, in the system, there is a memory 
about the occurring phenomena. This memory will decrease (asymptotically) to zero. 
The correlation function can be considered in this case as the probability of finding 
the quantity A in any point of space at moment t if the specific quantity was in another 
point of space at moment t = 0.

In the general case of non-normalised correlation functions of physical properties, 
mathematical formalism boils down to the averaging of Legendre’s polynomials  
(so-called spherical harmonics):

	  C t L P PL t( ) ( ) cos cos� � � �� � �2 1 0� � ,	  (5.23)

where Q0  is the angle measured at t = 0, and Qt  is the angle measured at t = t1 > 0. L = 1 
is the correlation function studied in dielectric measurements, and L = 2 corresponds 
to the correlation function in the nuclear magnetic resonance method (NMR).

The microscopic normalised correlation function of a single permanent dipole 
moment m whose length � ��  does not depend on time (m(0) = m(t)) is defined as: 

	  C t
t
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( ) ( )
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�
0
0 0

. 	 (5.24)
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In the nematic or smectic phase A, assuming the orientational order,  
i.e. considering a rigid molecule, the correlation function CA (t) will be limited to the 
averaging of the values of angle Q.

This results in the function:
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� ,	  (5.25)

which describes the fluctuation of the deviation of the dipole moment from the axis 
of symmetry.

In the general case, when the orientation has to be described by three Euler angles 
W ≡ (q, j, y), the correlation function CA (t) will be limited to the statistical averaging 
of the relevant elements of the Wigner matrix: 

	  M t D D tpq
L

pq
L

p q
L( ) ( ) ( )’� � �� � ��
�� �0 .	  (5.26)

Due to the orthogonality of the Wigner function, the components describing 
mutual correlations disappear. It can be assumed that L = L′, p = p′, q = q′.

Solution of the diffusion equation for the nematic phase

In 1973, Nordio, Rigatti and Segre proposed a theory known in literature as the NRS 
theory. Let us analyse the solution of the nematic phase diffusion equation proposed 
by this theory, which is presented below.

The nematic phase diffusion equation takes on the following form:

	         N
B

P t LD L LU P t
t k T

1ˆ ˆ ˆ ˆ, ,
 

        
,	  (5.27)

where  ND̂   is the diffusion tensor, and L̂  is the operator of infinitely small 
(infinitesimal) rotations around the long axis of symmetry, formally equal to the 
quantum-mechanical angular momentum operator (for  = 1 ). U �� �  is the 
(potential) energy that the molecule overcomes when changing its orientation.

Wigner functions Dpq
L �� � p q, ,� �� �0 1  create a matrix representation of the rotation 

operator and are therefore most frequently used to mathematically describe the problem:
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If a transformation is made into a molecular system (orthogonal xyz) with an 
longitudinal axis () and a twice degenerated transverse axis (^), in which the tensor 

 ND̂   has the form of a diagonal matrix with the main components D Dzz � ��
, 

D D Dxx yy� � � , then the solution of the diffusion equation is reduced to the problem 
of the eigenvector:

	     N n n nD̂       .	  (5.29)

The calculation of the average for angular variables takes the following form:
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This definition of the problem leads to the diffusion equation in the form of:
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where � � � � �
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The operator’s own functions ��
2  are matrix elements Dpq

L �� �  with eigenvalues 
of L(L + 1) + (k – 1)p2, where k = D|| /D^.

If the potential U is expressed as a series of Wigner matrix elements:
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(see the nematic potential of HJL) and the mesophase symmetry D h∞  (which happens 
in nematic phases), and the uniaxial symmetry of molecules are taken into account, 
then a general solution of the diffusion equation taking into account the components 
derived from the mutual correlations, after averaging for angular variables, takes the 
following form:
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where � �pq
k

pq
kD� � ��

�1
 and Apq

k  are coefficients proportional to the dielectric 
increment. The value tpq

k  is interpreted as the correlation time.
Ferrarini et al. [2] have made a numerical evaluation of the model presented 

herein. An important conclusion is that the correlation time assigned to the D00
1  
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component is strongly dependent on the order parameters. Calculations made with 
one component in the above development have demonstrated that this approximation 
is correct for all forms of potential. A numerical analysis made it possible to draw 
further conclusions. The potential recorded in the above form provides three 
timescales describing dynamic phenomena. The first interval of very short scale, 
decreasing rapidly with the increase in the height of the potential, connected with the 
non-steady movement inside the well of the potential limited by angles q = 0 and q = p. 
The second interval of mean time scale assigned to the Wigner matrix elements with 
p = q and corresponding to the uniaxial rotation around the long axis of symmetry. 
It should be emphasised here that the symmetry of the system imposes the condition 
tpq = tqp, which is fulfilled only when D|| = D^. The third interval of very long times, 
which characterises the disappearance of the components D P00

1
1�� � � � � �cos cos ,� �  

is connected with 180° jumps over the potential barriers. In molecular terms, 
this jumps process is called an Arrhenius process, i.e. it demonstrates activation 
behaviour. Fig. 1 shows the relationship between the value � �pq pqD1 1 1

� � ��

�
, i.e. the 

frequency of dielectric relaxation normalised to the perpendicular component of the 
diffusion tensor. This relationship was drawn on admission in the potential of the 

ratio 
U
U

4

2

1
3

� �  (see Eq. 5.32).

All calculations were made with D|| /D^ = 1. As one can see, the inverse of time t00 
strongly decreases with the increase of the order parameter S, regardless of the form 
of the potential, which is in accordance with the previously formulated conclusion. 
The remaining components are less dependent on the change S. Assuming that  
S = 0.5 and D^~108s-1, Nordio and Segre calculated the critical frequency 
fC (p = q = 0) = (2pt00)

-1 for the reorientation described by the component D00
1 , which 

takes place in the area of megahertz frequencies. For the D01
1  component, the critical 

frequency is in the gigahertz area. As can be seen from Fig. 1, the correlation times 
tpq = tqp (p = 0, q = 1) and tpq (p = q = 1) are weakly dependent on the form of the 
potential.

Fig. 2 shows the effect of anisotropy of the diffusion tensor on a pq
1 . In relation to 

the values calculated from D|| /D^ = 1, it is necessary to make a shift by the factor of 
[(D| |/D^) –1]q2. The figure shows that as tensor anisotropy increases, the difference   
� �01

1
00
1� increases. This fact suggests good separation of relaxation areas attributed 

to the components D01
1  and D00

1 .
Of note are the numerical estimations of the influence of steric effects on the NRS 

theory presented by Kozak and Mościcki (Table 1) [3]. By calculating the relaxation 
times tpq and the coefficients Apq (p, q = 0.1), they took into account the steric 
component in the nematic potential by introducing the parameter X, which is the 
ratio of the length to the width of rod-like molecules. In the case of the nematic 
potential of dispersion forces without a steric component, the change of parameter 
X caused a slight change of the time t00. With an increase in the parameter X by 
about one and a half times (X = 1.67), Kozak and Mościcki achieved an increase of 
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t00 1.88 times. However, when the potential was increased by a steric component, the 
change of the parameter X as mentioned above (X = 1.67) caused a jump of the time 
t00 by an order of magnitude (increase about 52 times).

Fig. 1. Dependence of ( )�pq
1 1�  on the parameter S P= 2

The impact of the steric effect on the other times was smaller. The comparison of 
the times t00 of the first six substances of the p-azoxyanisole series collected in Table 
1 may be a certain evaluation of the correctness of this model. The comparison shows 
that the increase in the parameter X by about 1.6 times, resulting from the change in 
the chemical structure of subsequent molecules of the p-azoxyanisole series, causes 
a six-fold increase in the time t00. It seems that in the case of p-azoxyanisole series 
molecules, the impact of the steric effect through nematic potential is small.

Fig. 2. Dependence of a pq
1  on anisotropy of the diffusion tensor D|| /D^
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Table 1

The relaxation times t00 and the parameter X of the first six (n = 1÷6) substances  
of the homologous p-azoxyanisole series (nOAOB) [3]

nOAOB t00 [ns]
(at T = TC – 10K) X =  a/b

1 4 2.7
2 7 3.0
3 14 3.4
4 15 3.7
5 42 4.2
6 25 4.5

Diffusion equation and internal motions

The diffusion equation can also take into account internal motions. The simplest form 
of description of an internal motion is to treat it as a jump between conformational 
equilibrium positions. For one degree of freedom, the matrix W of the passage from 
the minimum m to the minimum n through the saddle point s is expressed by the 
formula:
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where Ds – diffusion tensor, Us – conformational potential, Ei (i ≡ m, s) – free energy.
The general form of the diffusion equation for molecules with multiple degrees of 

freedom takes the following form:

	 �
�t

P t D D P ti r� � � �, , , ,� � � �� �� � �
 

, 	 (5.35)

where F describes the internal coordinates, and W describes the external coordinates 
that define the orientation in the laboratory system. 



Di  and 


Dr  are, respectively, the 
tensor describing the reorientation of the entire molecule and the tensor describing 
the reorientation of its fragments. The potential acting on a molecule with internal 
degrees of freedom in the liquid crystal phase can be expressed in the following form: 

	  U U Utors mf� � � � �, ,� � � � � � � �, 	 (5.36)

where U tors �� �  is the twist component and U mf � �,� �  is the component describing 
the anisotropic interaction with the environment. This expression can be spread out 
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into the sum of components from different units, such as e.g. functional molecular 
groups:

	 U U Ucore i

i

mf � � � � �, ,� � � � � � � �� , 	 (5.37)

where U core  and U i  describe, respectively, the energy of the body of the molecule and 
the energy of its i-th fragment, taking the following form:
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where k1 and k2 are, respectively, the intensity of the external molecular field acting 
on the body (k1) and on the i-th fragment of the molecule (k2).

Ferrarini et al. made numerical estimates of the spectral densities of the NMR 
signal for the 4-pentyl-4’-cyanobiphenyl (5CB) [2]. They assumed the ratio of  
D|| /D^ = 10 and two states. In the first state, they assumed the existence of a coupling 
between the movement of the body (inter motion) and the internal movements 
(intra motions). In the other state, they assumed there was no such coupling. The 
calculations made it possible to conclude that the coupling effect becomes significant 
when the diffusion movement of the molecule as a whole is slower than the frequency 
of the conformational leaps.

Kozak and Wróbel demonstrated that within the framework of the NRS theory, it 
is possible to take into account internal movements [4]. The movement of one final 
chain is treated as a sequence of diffusion steps in a potential with the symmetry of 
a cone, whose axis of symmetry coincides with the direction of the director, leading to 
the appearance of a discrete distribution of relaxation times. The theoretical relaxation 
spectrum obtained by the authors consists of seven components. Two components are 
the result of the movements of the entire molecule. The others originate from internal 
movements, such as rotation around the long axis of the chain, precession around 
the axis of the cone and “rattling” in the area of the cone. Of course, the predicted 
relaxation spectrum must also include components resulting from the coupling of 
basic movements with internal movements. It should be emphasised that a numerically 
correct distribution of the real spectrum into seven modes will, however, encounter 
serious difficulties in interpretation. The critical frequencies of internal movements 
fall within one value range – the gigahertz area. Therefore, it is not possible to 
unambiguously assign the times ti to the above-mentioned reorientations. In Chapter 
5.5 of [1], the distribution of dielectric spectroscopic spectra was performed within 
the basic NRS theory. The difference between the predictions of the NRS theory and 
the experimental results was interpreted as coming from internal movements, which 
were treated as a global reorientation. The “amplitude” of all internal movements in 
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the case of the 3OAOB molecule discussed in Chapter 5.5 of [1] is only 6% of the total 
increment. This value confirms the impossibility of separating (in this case) the five 
modes suggested by Kozak and Wróbel [4]. Similar values of increments caused by 
global internal movements are also observed for other liquid crystals.
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6. NANOSTRUCTURES

Nanotechnology is a science that deals with the creation of nanostructures, i.e. 
structures on the level of individual atoms and molecules, in order to control structures 
at the molecular level. Nanomaterials are structures containing nanoparticles. So the 
question is: What are nanoparticles? 

Nanoparticles are intermediate structures between atoms and molecules and 
macroscopic objects. As defined by the European Commission (Brussels, 18 October 
2011 – According to the recommendation adopted by the European Commission), […] 
“nanomaterials” are materials in which the dimension of the main ingredients ranges from 
one – 1 nm – to one hundred billionth parts of a meter – 100 nm. The definition adopted 
currently is based on the size of the particles in the material and not on hazards or risks. 
According to the definition, a “nanomaterial” means a natural, incidental or manufactured 
material containing particles, in an unbound state or as an aggregate or as an agglomerate 
and where, for 50% or more of the particles in the number size distribution, one or more 
external dimensions is in the size range 1–100 nm (see Fig. 1).

Fig. 1. Comparison of dimensions of molecular systems [1]

For comparison, 1 nanometre = 10-9m. The unit often used to describe the dimension 
of a crystal or of phenomena occurring on the atomic scale, which is not an SI unit, is 1 Å 
(angstrom) equal to 10-10m. Thus, 1 nm is equal to 10 Å. This means that along a one- 
-nanometre section, one can place about 20 hydrogen atoms (assuming that the radius of 
a hydrogen atom in the ground state is equal to about 0.0529 nm) or about 17 O2 atoms, 
which confirms that nanoparticles are atomic scale systems – for comparison, the diamond 



89

lattice constant a = 3.56 Å = 0.356 nm, the copper lattice constant a = 3.615 Å = 0.3615 nm, 
and the diameter of human hair is approx. 100,000 nm, which is one million Å (see, for 
instance, the size comparison in Fig. 2).

Fig. 2. Size comparison from man to a water molecule [1]

In the understanding of a physicist, nanoscience describes how structures organised 
at the level of individual molecules are created by using specialised nanomachines.

This statement is close to the theses presented in Richard Feynman’s (1959) lecture 
titled “There’s Plenty of Room at the Bottom”. The lecture, given on 29 December 1959 
during the annual meeting of the American Physical Society at the California Institute 
of Technology (Caltech), became an announcement of nanotechnology. The associated 
paper was first published in February 1960 [2]. Richard Phillips Feynman (born on 
11 May 1918 in New York, died on 15 February 1988 in Los Angeles), an American 
physicist-theorist, recognised in 1999 as one of the top ten physicists of all time. He 
was one of the main creators of quantum electrodynamics and a Nobel Prize winner 
in physics in 1965 for independent creation of relativistic quantum electrodynamics.

Feynman (1959) considered the problem of what it takes to fit the 24-volume 
“Encyclopaedia Britannica” on a pinhead. He presented the concept of miniaturisation 
and the possibilities provided by a technology that can operate at the nanometre level.

The concept or definition of nanotechnology was also dealt with by other scientists. 
A number of definitions are given below:

•	 Norio Taniguchi’s19 1974 definition presented in the work titled “On the Basic 
Concept of ‘NanoTechnology’” [20]: Nanotechnology is a technology that leads 
to very high accuracy and extremely small dimensions, i.e. a precision of 1 nm.

19	 Norio Taniguchi, who was a professor of Tokyo University of Science, coined the term nano-techno-
logy in 1974 to describe semiconductor processes.  The European Society for Precision Engineering 
and Nanotechnology presented Professor Taniguchi with its 1st Lifetime Achievement Award in Bre-
men, May 1999.
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•	 A. Franks’ 1987 definition presented in the work titled “Nanotechnology” [3]: 
Nanotechnology involves the production of elements with dimensions or 
dimensional tolerances in the range of 0.1–100 nm.

•	 Definition from Wikipedia: Nanotechnology is the general name for a whole set 
of techniques and methods of creation of various structures of nanometric sizes 
(10–1,000 nm), i.e. at the level of individual molecules.

•	 Sefinition from Netpedia: Nanotechnology – the science of micromachines, i.e. 
miniature devices made of single atoms; Nanobots (microscopic, autonomous 
or remotely controlled robots) working under the control of nanocomputers 
(computers with molecular size systems) can be widely used in medicine and 
science of the future.

•	 Definition from the web page “trilog” [4]: Nanotechnology is a revolution in the 
field of materials whose structures and elements exhibit peculiar and perfectly 
developed physical, chemical and biological properties, in which the processes 
taking place are caused by their nano-dimensions. The primary objective of 
nanotechnology is to exploit these properties by achieving control on the atomic 
and molecular level of molecules to develop effective ways to produce and use 
them.

•	 Definition of The Royal Society & The Royal Academy of Engineering, presented 
in “Nanoscience and Nanotechnologies: Opportunities and Uncertainties”: 
Nanoscience is the science of natural phenomena and manipulation of materials 
on the level of atoms and molecules and in macromolecular sizes, where 
properties differ significantly from those of large scale. Nanotechnologies are 
projects, characterizations, productions, and applications of structures, devices 
and systems through the control of shapes and sizes on a nanoscale. 

•	 Definition from the book “A Gentle Introduction to the Next Big Idea” [5]: 
Nanoscience is the study of the fundamental properties of molecules and molecular 
structures that have at least one dimension from 1 to 100 nanometres. These 
structures are known as nanostructures. Nanotechnology is a way of applying 
these nanostructures in useful machines on the nanoscale.

•	 Definition from the book “Nanoscale Science and Technology” [6]: 
Nanotechnology is the term for the design, production and use of materials 
having one or more dimensions in the range from 1 to 100 nm.

Nanoparticles have properties different from those of particles made up of the 
same atoms but with a size of micrometres and larger; e.g. nanocrystals (nanometric-
sized crystals) can have melting points several hundred degrees lower than the melting 
point of larger crystals. Their crystalline structure may be different, e.g. they may have 
a smaller lattice constant. This is probably a result of the ratio of the number of atoms 
on the surface to the number of atoms in the volume in nanocrystals, which causes 
the surface energy to have a key influence on the stability of the crystal. A model 
nanocrystal contains 3 x 3 x 3 = 27 atoms. There is only one atom in the volume, thus 
there are 26 atoms (96%) on the surface.
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Fig. 3. A model nanocrystal contains 3 x 3 x 3 = 27 atoms

If the edge of a crystal is 1,000 times longer (1 µm), the crystal would contain:

5,000 x 5,000 x 5,000 = 125,000,000,000 atoms,

of which in volume there would be:

4,998 x 4,998 x 4,998 = 124,850,059,992 atoms,

and on the surface, there would be only: 

(125,000,000,000 – 124,850,059,992) = 149,940,008 atoms,

which is 0.12% of all atoms 
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Thus, the dominating role of the surface in relation to the volume makes it 
possible to disregard gravitational effects resulting from the volume and the mass.  
It is possible to place many nanoparticles on a small surface or in a small volume and 
to build complex and multifunctional nanostructures out of them. An example is the 
“atomic” IBM logo presented in 1989 (Fig. 4). A scanning tunnel microscope was 
used to place 35 single xenon atoms on a chilled nickel crystal substrate. Atoms were, 
for the first time, precisely aligned on a flat surface.

Fig. 4. The “atomic” IBM logo [7]. The electrical and optical properties are controlled by quantum 
effects; these properties can be changed in a controlled way by changing the size of nanoparticles
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The extraordinary properties of matter in the form of nanoparticles open up new 
possibilities of application in practically all fields of technology, biology and medicine. 
Many methods of effective and reproducible manufacturing of nanomaterials with 
full control of their structure have already been developed. Special nanostructures 
are nanotubes, fullerenes and quantum wires. Nanotubes are hollow nanoparticle 
structures; carbon tubes are currently the most popular. These are excellent heat 
conductors and are extremely durable and non-stretchable. They are in the form 
of cylinders with diameters from 1.0 to 1.5 nm. A nanotube is a one-dimensional 
structure (like a quantum wire), as described below.

Multi-walled carbon nanotubes have a thermal conductivity five times higher 
than that of copper and are characterised by excellent electrical conductivity and 
high mechanical strength, up to 20 times higher than that of steel.

The largest demand for nanotubes in recent years has been in the polymer 
segment. In these materials, they improve the mechanical properties of the 
composites obtained. The second most important area of application of nanotubes 
is the electrical and electronics sector. The share of CNT (carbon nanotubes – Fig. 5) 
is steadily increasing in applications such as solar cells, semiconductors, transistors, 
touch sensors, ultraconductive copper and electromagnetic devices. 

Fig. 5. Nanotubes [8]

In a solid crystal, the motion of electrons and holes is not limited in space – no 
translation symmetry disturbance in two directions (spatial).

As mentioned above, a nanotube is a one-dimensional structure. This term results 
from a disturbance in the symmetry of translation in two directions (spatial) and not 
from the geometry of the structure. Just like fullerenes, they are zero-dimensional 
structures, so-called quantum dots. The figure below shows that carbon atoms form 
a spatial geometric structure (empty inside) of the Buckyball type, i.e. complex 
surveying domes composed of pentagons and hexagons (Fig. 6). However, since 
the motion of the carrier is limited by the potential barriers in all three dimensions, 
fullerenes are considered to be a zero-dimensional nanostructure.
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Low-dimensional structures (nanostructures) make it possible to limit (partially 
or totally) the movement of the carriers: 

•	 3D means a solid crystal; 
•	 2D means a quantum well (makes it possible to limit the movement of the 

carriers to a plane); 
•	 1D means a quantum wire (a system that limits the movement of electrons or 

holes to one direction); 
•	 0D means a quantum dot (movement of the carrier is limited in three 

dimensions). 
In order for spatial limitation of the movement of carriers to exist, the depth 

of a  well (or the size of a quantum dot) must be comparable to the length of the 
de Broglie wave, which usually means sizes at the level of 10 nm. 

Fig. 6. Fullerenes – left side: C60, right side: C70 [9]

There is already a commercial market for the manufacture of products using 
nanomaterials. Clothing and footwear containing silver nanoparticles with 
bactericidal and neutralising effects have already been manufactured (Fig. 7).

Fig. 7. Thermoactive shirt with silver ions
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The first medicine containing nanoparticles of albumin approved for use in the 
USA (in 2005) was Abraxane®. It was demonstrated that encapsulation of albumin 
nanoparticles improves their therapeutic effect in the treatment of breast cancer 
(Fig. 8).

Fig. 8. Diagram of the Abraxane® drug containing albumin nanoparticles [10]

Another surprisingly interesting example of the use of nanoparticles (although 
apparently unintentional) is the chalice, which is now located in the British Museum 
in London (Fig. 9). The chalice was probably made in the 4th century AD. The 
patterns on the vessel tell the story of the King Lycurgus, who is caught in a thicket 
of vines. It is a punishment for the transgression committed against Dionysus, the 
Greek god of wine.

The unique properties of the cup were first noticed in the 1950s, when the vessel 
was placed in the museum. Only in 1990, thanks to the observation of the glass under 
a microscope, did scientists guess how the colours change.

Fig. 9. The Lycurgus Cup (4th century AD) [11]

The chalice was created about 1,600 years ago, using a process of deposition of very 
fine gold and silver particles in the glass. The diameter of the nanoparticles is about 
50–70 nm. When illuminated at the front, the chalice is light green (jade), when the 
light source is placed inside or behind it, the colour changes to ruby red (Fig. 10). 
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Fig. 10. Lycurgus Cup in incident and transmitted light [11]

Ancient Romans created the so-called dichroic 
glass, in which a play of two colours can be 
observed. Such glass, allowing a given colour to 
pass through, reflects its complementary colour. 
After application of several dozen layers of 
nanoparticles, the colour differs depending on the 
angle of observation and the direction of incident 
light.

Gold and silver nanoparticles of a certain 
diameter strongly diffuse light of wavelengths 
corresponding to green (550 nm). However, 
when the cup is illuminated from behind, the 
green colour is absorbed and the observer sees 
only the red colour, which is a complement to the 
green (it lies on the opposite side of the colour 
circle (colour wheel)). 

The Dichroic glass used nowadays was 
developed by NASA researchers for use in the 
mirrors of satellites. Dichroic glass is used in the 
production of lasers, sunglasses, lighting, fibre 
optics, stained glass and as filters in photography. 
It is characterised by resistance to weather and 
abrasion and by colours that never fade. This 
material is used in everyday technology [11].

Gold-coloured windows of stained glass in 
medieval churches purify the air in the sunlight 
and are one of the earliest examples of the use 

Fig. 11. The God Father stained-
glass window, Franciscan Church 
in Cracow, designed by Stanisław 

Wyspiański [13]



96

of nanotechnology. Medieval glaziers used gold nanoparticles to produce glass of 
different colours, depending on the particle size, whereas the best-known example is 
ruby-coloured glass [12].

Professor Zhu Huai Yong, from Queensland University of Technology in Australia, 
who studies old stained glass, discovered that gold-coloured glass does not change its 
colour, but it is also a nanocatalyst that decomposes air pollutants under the influence 
of light [12] (see, for instance, the old stained glass window in Fig. 11).

Tiny gold particles become very active thanks to the energy supplied by the 
Sun and can break down volatile organic compounds, among other things. The 
decomposition of pollutants results in small amounts of carbon dioxide. According to 
Professor Zhu, gold nanoparticles are a very economical catalyst. Under the influence 
of light, only the gold nanoparticles heat up, leaving their surroundings cool. They 
could potentially be used in many chemical processes. 

Gold is chemically inert, but gold nanoparticles show strong catalytic properties. 
For example, gold nanoparticles on a titanium dioxide substrate very actively oxidise 
carbon monoxide (Fig. 12).

Fig. 12. Catalytically active gold on ordered titania supports. Schematic structural models for 1-D, 2-D 
and 3-D structures with two- and three-atomic-layers thick Au particles on the TiO2 [110] and STM 
images showing gold nanoparticles on TiO2 (direction [110]); 2nm Au = very active, 10nm and bulk 

Au = completely inactive) [21]

Gold nanoparticles, which form a solid colloidal solution in glass, exhibit a different 
colour than the colour known for solid metal because of the so-called plasma surface 
resonance, i.e. a specific interaction of plasmons (collective vibrations of free electrons) 
located near the surface of the metal with incident visible light. Quantum effects cause 
the wavelength of absorbed radiation to be strongly dependent on the curvature of the 
surface, i.e. on the size of Au nanoparticles. The surface of gold nanoparticles can be 
easily functionalised (by attaching specific receptors or antibodies), so that they can 
be used to detect specific cells or antigens. Due to their specific electron and optical 
properties, functionalised gold nanoparticles are used for imaging of lesions at the 
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level of organs, tissues and individual cells using optical or electron microscopy. An 
additional functionalisation of the surface of Au nanoparticles and drug molecules 
enables their application in targeted therapy, in which therapeutic substances are 
delivered in a controlled, selective way to cells or tissues constituting the outbreak of 
a disease. Functionalised gold nanoparticles can be used to destroy cancer tissue by 
heating it with IR radiation (Fig. 13). The gold nanoparticles with short DNA chains 
attached to them enable identification of a  given DNA sequence in a sample. Gold 
nanoparticles accumulate in this region; the interactions between gold nanoparticles 
change the absorption of surface plasmons (a red sample becomes blue) [11]. 

Fig. 13. Functionalised gold nanoparticles [11]

A common feature of all nanoparticles is the predominant share of surface atoms 
or molecules in the total number of atoms. In a cube of iron with a side of 1 cm, there 
is only approx. 10-5% of the total number of atoms; in a cube with a side of 10 nm, 
surface atoms would already represent 10% of the total number of atoms; in a cube 
with a side of 1 nm, every iron atom would be on the surface.

The percentage of surface atoms as a function of change of the diameter of 
palladium clusters is presented in Fig. 14.

CANCER

NANOSHELL

Fig. 14. Percentage of surface atoms as a function of change of the diameter of palladium clusters [15]

Nanotechnology-based medicines have been approved by the Food and Drug 
Administration of the United States (FDA) and have been used for several years. One 
of them is DOXIL® – a liposome preparation of doxorubicin, recommended for use 
in the case of Kaposi sarcoma and in cases of breast and ovarian cancer resistant to 
treatment [16].

Number of shells 
around one central 
atom

1 2 3 4 5

Number of atoms 13 55 147 309 561

Percencage of atoms 
at the surface 92 76 63 52 45
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The group of nanopreparations also includes other chemotherapeutic agents, 
such as Eligard®, Genexol®, Opaxio® or Zinostatin Stimalamer®. Another example is 
an anti-cancer drug containing gemcitabine, based on gold nanoparticles that act as 
a “drug delivery” system.

A study conducted by the Nanobiotechnology Department of the Warsaw 
University of Life Sciences demonstrated the anti-cancer properties of graphene 
nanoplates in the treatment of brain tumours (multiform glioma) and documented 
that platinum nanoparticles are equally effective and significantly less toxic compared 
to traditional cis-platinum. The synergistic action of both factors (platinum 
nanoparticles deposited on graphene flakes) was found to be the most effective 
against cancer.

Silver has also been used in medicine, although as a heavy metal, it is very 
controversial. Robert Burrell created the first Acticoat™ (Smith and Nephew, London, 
UK) approved product to treat wounds, burns, ulcers, epidermal necrosis and 
pemphigus. Silver nanoparticles and their antibacterial properties are used in the 
production of medical instruments: the Silverline catheter (Spiegelberg GmbH and 
Co. KG, Hamburg, Germany) and the ON-Q Silver Soaker™ (I-Flow Corporation, 
CA, USA). 

When antibiotics were not yet known, silver compounds were widely used in 
medicine, and during wars, one of the most effective methods of wound healing was 
to put silver coins on wounds. The destructive effect of silver on microorganisms 
has been confirmed in numerous studies. Colloidal silver, according to EMSL tests 
(Analytical, Inc. Microbiology Division), kills such microorganisms as: Aspergillus 
niger, Candida albicans, Escherichia coli, Escherichia coli 0157H7, methicillin-
resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus 
aureus (ut13), Trichophyton rubrum (ut15), vancomycin-resistant Enterococcus 
faecalis (VRE) and vancomycin-resistant Staphylococcus aureus (VRSA). 

The negative effects of antibiotics can be partially offset by the introduction of 
antibacterial preparations based on Ag nanoparticles. Silver not only has antibacterial 
properties but also anti-inflammatory properties, and it seems that it also has anti-
cancer properties.

Methods of nanoparticle production can be divided into two groups (Fig. 15):
•	 bottom-up methods; 
•	 top-down methods.
Bottom-up methods consist in building nanometric structures from single atoms 

or particles. Top-down methods consist in the fragmentation of a micrometric 
structure into a nanometric scale.

The bottom-up method, as mentioned above, consists in the composition of the 
desired nanostructure from blocks, which are chemical molecules, most often organic 
molecules capable of self-organisation. We owe the concept of this method to, among 
others, Richard Feynman, who, in his famous lecture, mentioned the possibility of 
building nanostructures from single atoms.
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Fig. 15. Methods of nanometal production: top-down, bottom-up [17]

Bottom-up methods include: 
•	 sedimentation from the gaseous or liquid phase;
•	 nanocrystallisation from the amorphous phase;
•	 consolidation of nanopowders;
•	 co-precipitation of nanoproducts in solutions; 
•	 application of reagents layer by layer (the Langmuira-Blodgett technique);
•	 decomposition of organic precursors; 
•	 synthesis in hydrothermal conditions; 
•	 reagent hydrolysis and subsequent condensation; 
•	 surface redox exchange; 
•	 spraying in vacuum. 
The bottom-up method was inspired by phenomena occurring inside living 

organisms. An example of such a phenomenon is self-organisation, i.e. spontaneous 
formation of complex structures from smaller elements. The mechanism enabling 
such behaviour is the entire system’s tendency to achieve the minimum energy 
state (free energy or other thermodynamic potential). As a result, there is no need 
for outside interference. The process runs according to the laws of physics. Fig. 16 
presents a molecular man consisting of 14 carbon monoxide molecules arranged on 
a metal substrate and depicted with the use of a scanning tunnel microscope [18].
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Fig. 16. A molecular man consisting of 14 carbon monoxide molecules arranged  
on a metal substrate and depicted with the use of a scanning tunnel microscope [18]

Silver vessels for serving meals and drinks protected against the proliferation 
of bacteria in the food. At present, silver nanoparticles can be found in fabrics 
(underwear, socks, bandages), cosmetics (powders, deodorants) and even 
household appliances (refrigerators, washing machines). However, these products 
quickly lose their nanoparticle silver coating during use, and the particles are 
released into the environment and, therefore, can penetrate into the human body. 
Excessive amounts of silver in the body are not healthy. There are known cases 
of people who, due to uncontrolled absorption of silver by the body, fell ill with 
argyria (called “silver poisoning”). Thus, for medical reasons, silver nanoparticles 
have been replaced with zinc (II) oxide, which, in addition to its bactericidal 
properties, also has a desiccant effect. 

Silver poisoning – argyria (from the Greek word ἄργυρος – silver) – is a set 
of symptoms caused by unintentional absorption or deliberate intake of silver 
compounds (usually silver dust). The main symptom is a change in skin colour to 
blue or grey in areas exposed to sunlight. The discoloration may affect some areas 
of the skin or the entire surface of the skin. This condition may be temporary and 
cease after the absorption or intake of silver stops. The research results gathered by 
the Environmental Protection Agency indicate that apart from greying of the skin, an 
increased content of silver in the body does not cause any disease effects, especially 
cancer (according to Wikipedia). Consequently, its use in fabrics (bandages, plasters) 
also makes it possible to dry the wound and speed up healing. However, due to 

The top-down method consists in fragmentation of the micrometric structure to 
a nanometric scale. For example, in the case of nanometals, the most important of 
these methods are the large plastic deformation methods.
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unexplored side-effects, these products are not allowed to be sold in all countries. 
Nanoparticles of zinc (II) oxide are also used by dentists to fill tooth tubules (4 µm). 

Nanoparticles made of chemical compounds (metal oxides, e.g. ZnO, SnO2) 
forming crystal lattices are used as carriers of drugs in the body. The catalytic 
properties of titanium(IV) dioxide are used in self-cleaning coatings (glass, plates, 
fabrics, films, car mirrors, paints for household appliances, etc.), in flue gas (NOx 
reduction), water (e.g. pesticide decomposition) and sewage cleaning/purification/
treatment processes, etc., and as a catalyst for organic synthesis in the production 
of antibacterial materials and for the production of photovoltaic cells and solar 
batteries. Titanium (IV) dioxide is able to absorb UV light and is therefore used in 
the production of varnishes for wood, automotive and aerospace topcoats, stains, 
printing inks, laminates, parquet coatings and protective waxes. In such coatings, it 
plays an important role in making the surface weatherproof and preventing loss of 
gloss and chalking. In addition, it reduces the receptivity of the surface to scratches 
and abrasion. It does not affect the colour of the surface (it is transparent), and its 
share by weight does not exceed 5%. The absorption of UV by titanium (IV) oxide 
also allows for its application in the production of transparent plastics, agrotechnical 
films, packaging films, protective films for food (extending the expiry date, limiting 
the speed of decomposition of vitamins) and cosmetic products (protective creams, 
sunbathing creams, UV filters) [11]. The development of nanotechnology is 
increasing the number of nanostructures in the environment, and the lack of data on 
the harmfulness of nanoparticles to human health and the environment is leading to 
legislative changes and a tightening of the criteria for placing new products containing 
nanoparticles on the market. Research into the safe use of nanoparticles is therefore 
crucial for the development of nanotechnology. All hazards that have both a direct 
and indirect impact on the environment and on people can significantly slow down 
or even stop the development of nanotechnology.

There is no research and information on how nanoparticles behave in the 
natural environment and how they directly affect human body cells or after 
accumulation in the body. It is important to know the magnitude of these risks. 
For example, do they cause mutations and protein replication processes or 
apoptosis? Apoptosis (meaning a falling of leaves in Greek) is a natural process 
of programmed cell death in the body. Thanks to this mechanism, worn out or 
damaged cells are removed from the body. This is a positive process of controlled 
cell suicide. It was also found that copper (II) oxide and silver nanoparticles were 
deadly to soil microorganisms, while zinc (II) oxide nanoparticles inhibited their 
growth and reduced their reproductive capacity. The toxicity of nanoparticles 
decreased with the increase of their aggregates. It was found that the toxicity of 
some nanoparticles also depends on the presence of other compounds, e.g. the 
toxicity of copper nanoparticles to crustaceans decreased with the content of 
organic carbon in the water in which the crustaceans lived. Dr Enda Cummis 
from the Irish UCD Institute of Food and Health created a list of nanomaterials 
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according to the degree of risk they pose to the environment and human health. 
Silver and titanium (II) oxide nanoparticles in surface waters represent a moderate 
to high ecotoxicological risk. In 2009, the most dangerous nanoparticles and the 
groups of organisms most sensitive to their effects were identified. This was done 
by reviewing available scientific reports in terms of toxicity of nanoparticles to 
particular species of bacteria, algae, crustaceans, nematodes, yeasts, ciliophorans 
and fish – organisms that are most often the first links in the food chain. The 
group of nanoparticles evaluated included titanium (IV) oxide, copper (II) oxide, 
nanotubes, C60 fullerenes, zinc (II) oxide and silver:

•	 zinc (II) oxide and silver were determined to be extremely toxic – LD50 < 0.1 mg/l; 
•	 C60 fullerene and copper (II) oxide were determined to be highly toxic –  

LD50 = 0.1–1 mg/l; 
•	 nanotubes were determined to be toxic – LD50 = 1–10 mg/l;
•	 titanium (IV) oxide was considered to be among the least toxic – LD50 =  

10–100 mg/l.
Lethal dose, LD (Latin dosis letalis, DL) – the toxicity of a substance or the 

harmfulness of ionising radiation. 
For toxic substances, the most commonly used designation is LD50; this is 

a conventional value: 
•	 LD50 – a dose that causes the death of half of the irradiated specimens within 

30 days;
•	 LD100 – a dose causing the death of all irradiated specimens within 30 days [19].
In the considerations related to nanoparticles, the problem of their toxicity 

arises. Nanomaterials are often characterised by different properties compared 
to their equivalents on a “macroscopic” scale, which affects their biological 
properties. Such change is often unfavourable for biological applications due to 
the cytotoxic effect of nanoparticles. Quite often materials that are normally inert 
to living organisms exhibit a significant increase in cytotoxicity when the size of 
the particles forming them is reduced to the nanometric scale. Cytotoxicity may 
be caused by easier and increased release of heavy metal ions from the surface of 
such nanoparticles as quantum dots, such as CdSe, CdTe and PbS. Cytotoxicity of 
nanomaterials may also be caused by the porosity of nanoparticles, their tendency 
to agglomerate, their significant chemical affinity to many biological structures 
or the increased chemical reactivity of their surface. Physical and mechanical 
factors, such as size comparable to or smaller than biological structures, also play 
an important role. By forming stable suspensions in the air, nanomaterials form 
harmful dusts, which, when inhaled by humans, can cause pneumoconiosis or lung 
cancer. Due to their small size, nanoparticles can be absorbed by some cells of living 
organisms as a result of endocytosis and can accumulate as a result of adhesion to 
proteins, cell membranes and other biological structures. These processes can cause 
cell and tissue damage through increased oxidative stress, ion channel blockage or 
mechanical damage to the cell membrane. These factors can also interfere with cell 

https://pl.wikipedia.org/wiki/%C5%81acina
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proliferation (in biology, proliferation means cell multiplication), resulting in cell 
death or uncontrolled growth that can lead to neoplastic lesions.

The structural properties of nanoparticles are not the same for all materials. An 
increase of the surface area, and thus of the surface energy, along with an decrease of 
the particle size are connected with a decrease of the distance between atoms. This 
relationship applies to clusters of metal atoms, e.g. copper. An inverse relationship, 
where a reduction in particle size causes an increase in the distance between them, 
has been observed in semiconductors and metal oxides. The adoption of certain 
structures, which are stable only on the nanometric scale is not fully described. 
The thermal properties are also unclear. It was found that the influence of surface 
energy on the thermal properties of the material causes a decrease in the melting 
temperature of gold nanoparticles in comparison with the melting temperature of the 
microcrystalline material. There are also known reports stating that smaller particles 
have higher melting temperatures. The mechanical properties of nanoparticles 
are also different from those of their macroscopic analogues (carbon compounds 
– nanotubes). Mechanical strength is affected by the number of defects occurring 
in the material, and the probability of their occurrence decreases with the size of 
the material. Increasing the surface-to-volume ratio causes some surface atoms to 
bond with their neighbours, which results in magnetic properties – ferromagnetism. 
Magnetic nanoparticles are often composed of only one domain, and they may exhibit 
so-called superparamagnetism. Reducing the size of particles affects the electron 
structure of the system. The ionisation potential is higher in small atomic clusters 
and directly influences the reactivity of nanoparticles. When the size of the system 
is reduced, the orbital energy or the position of bands (solids) influences the highest 
occupied molecular orbital (HOMO) of the valence band or the lowest unoccupied 
molecular orbital (LUMO). The difference between these levels influences the 
emission and the absorption and thus changes the optical properties of nanoparticles, 
e.g. colloidal gold is red and changes into yellow as the aggregates grow. When the 
system decreases and becomes comparable to the wavelength of de Broglie electrons, 
the discrete nature of electron states becomes apparent, e.g. conductive materials 
become insulators.
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